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Abstract. Measuring the causal effects of digital advertising remains challenging despite
the availability of granular data. Unobservable factors make exposure endogenous, and
advertising’s effect on outcomes tends to be small. In principle, these concerns could be
addressed using randomized controlled trials (RCTs). In practice, few online ad campaigns
rely on RCTs and instead use observational methods to estimate ad effects. We assess
empirically whether the variation in data typically available in the advertising industry
enables observational methods to recover the causal effects of online advertising. Using
data from 15 U.S. advertising experiments at Facebook comprising 500 million user-
experiment observations and 1.6 billion ad impressions, we contrast the experimental
results to those obtained from multiple observational models. The observational methods
often fail to produce the same effects as the randomized experiments, even after condi-
tioning on extensive demographic and behavioral variables. In our setting, advances in
causal inference methods do not allow us to isolate the exogenous variation needed to
estimate the treatment effects. We also characterize the incremental explanatory power our
data would require to enable observational methods to successfully measure advertising
effects. Ourfindings suggest that commonly used observational approaches based on the data
usually available in the industry often fail to accurately measure the true effect of advertising.
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Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/
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1.Q: 6 Introduction
DigitalQ: 7 advertising spending exceeded television ad
spending for the first time in 2017.1 Advertising is amajor
funding source for internet content and services (Benady
2016). As advertisers have shifted more of their ad ex-
penditures online, demand has grown for online ad ef-
fectiveness measurement: advertisers routinely access
granular data that link ad exposures, clicks, page visits,
online purchases, and even offline purchases (Bond 2017).

However, even with these data, measuring the
causal effect of advertising remains challenging for at
least two reasons. First, individual-level outcomes are
volatile relative to ad spending per customer, such that
advertising explains only a small amount of the vari-
ation in outcomes (Lewis and Reiley 2014, Lewis and
Rao 2015). Second, even small amounts of advertising
endogeneity (e.g., likely buyers are more likely to be
exposed to the ad) can severely bias causal estimates of
its effectiveness (Lewis et al. 2011).

In principle, using large-scale randomized controlled
trials (RCTs) to evaluate advertising effectiveness could
address these concerns.2 In practice, however, few

online ad campaigns rely on RCTs (Lavrakas 2010).
Reasons range from the technical difficulty of imple-
menting experimentation in ad-targeting engines to
the commonly held view that such experimentation is
expensive and often unnecessary relative to alternative
methods (Gluck 2011). Thus, many advertisers and
leading ad-measurement companies rely on observa-
tional methods to estimate advertising’s causal effect
(Abraham 2008, comScore 2010, Klein and Wood 2013,
Berkovich and Wood 2016).
Here, we assess empirically whether the variation in

data typically available in the advertising industry
enables observational methods to recover the causal
effects of online advertising. To do so, we use a col-
lection of 15 large-scale advertising campaigns con-
ducted on Facebook as RCTs in 2015. We use this data
set to implement a variety of matching and regression-
based methods and compare their results with those
obtained from the RCTs. Earlier work to evaluate such
observational models had limited individual-level data
and considered a narrow set of models (Lewis et al.
2011, Blake et al. 2015).
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A fundamental assumption underlying observational
models is unconfoundedness: conditional on observables,
treatment and (potential) outcomes are independent.
Whether this assumption is true depends on the data-
generating process and in particular on the requirement
that some random variation exists after conditioning
on observables. In our context, quasi-random variation
in exposure has at least three sources: user-level variation
in visits to Facebook, variation in Facebook’s pacing of
ad delivery over a campaign’s predefined window, and
variation due to unrelated advertisers’ bids. All three
forces induce randomness in the ad auction outcomes.
However, three mechanisms generate endogenous
variation between exposure and conversion outcomes:
user-induced endogeneity (“activity bias,” Lewis et al.
2011), targeting-induced endogeneity due to the ad
system overweighing users who are predicted to con-
vert, and competition-induced endogeneity due to the
auction mechanism. For an observational model to re-
cover the causal effect, the data must sufficiently control
for the endogenous variation without absorbing too much
of the exogenous variation.

Our data possess several important attributes that,
conditional on the quasi-random variation in ad ex-
posure, should facilitate the performance of observa-
tional methods. First, we observe an unusually rich set
of user-level, user-time-level, and user-time-campaign-
level covariates. Second, our campaigns have large
sample sizes (from 2 million to 140 million users),
giving us both statistical power and means to achieve
covariate balance. Third, whereas most advertising
data are collected at the level of a web browser cookie,
our data are captured at the user level, regardless of the
user’s device or browser, ensuring that our covariates
are measured at the same unit of observation as the
treatment and outcome.3 Although our data do not
correspond exactly to what an advertiser would be able
to observe (either directly or through a third-party mea-
surement vendor), our intention is to approximate the
datamany advertisers have available to them,with the
hope that our data are in fact better.

An analysis of our 15 Facebook campaigns shows a
significant difference in the ad effectiveness obtained
from RCTs and from observational approaches based
on the data variation at our disposal. Generally, the
observational methods overestimate ad effectiveness
relative to the RCT, although in some cases they sig-
nificantly underestimate effectiveness. The bias can be
large: in half of our studies, the estimated percentage
increase in purchase outcomes is off by a factor of three
across all methods.

These findings represent the first contribution of our
paper, namely, to shed light on whether—as is thought
in the industry—observational methods using com-
prehensive individual-level data are “good enough” for
ad measurement, or whether even fairly comprehensive

data prove inadequate to yield reliable estimates of ad-
vertising effects. Our results support the latter.
Moreover, our setting is a preview of what might

come next in marketing science. The field continues to
adopt techniques from data science and large-scale
machine learning for many applications, including
advertising, pricing, promotions, and inventory opti-
mization. The strong selection effects we observe in
digital advertising, driven by high-dimensional tar-
geting algorithms, will likely extend to other fields in
the future. Thus, the data requirements necessary to use
observational models will continue to grow, increasing
the need to develop and integrate experimentation di-
rectly into any targeting platform.
One critique of our finding that even fairly com-

prehensive data prove inadequate to yield reliable
estimates of advertising effects is that we do not ob-
serve all the data that Facebook uses to run its ad-
vertising platform. Motivated by this possibility, we
conducted the following thought experiment: “As-
suming ‘better‘ data exist, how much better would
that data need to be to eliminate the bias between
the observational and RCT estimates?” This analysis,
extending work by Rosenbaum and Rubin (1983a)
and Ichino et al. (2008), begins by simulating an un-
observable that eliminates bias in the observational
method. Next, we compare the explanatory power
of this (simulated) unobservable with the explanatory
power of our observables. Our results show that for
some studies, we would have to obtain additional
covariates that exceed the explanatory power of our full
set of observables to recover the RCT estimates. These
results represent the second contribution of our paper,
which is to characterize the nature of the unobservable
needed to use observational methods successfully to
estimate ad effectiveness.
The third contribution of our paper is to the literature

on observational versus experimental approaches
to causal measurement. In his seminal paper, LaLonde
(1986) compares observational methods with random-
ized experiments in the context of the economic benefits
of employment and training programs. He concludes
that “many of the econometric procedures do not rep-
licate the experimentally determined results” (p. 604).
Since then, we have seen significant improvements in
observational methods for causal inference (Imbens and
Rubin 2015). In fact, Imbens (2015) shows that an ap-
plication of these improved methods to the LaLonde
(1986) data set manages to replicate the experimental
results. In the job-training setting in LaLonde (1986),
observational methods needed to adjust for the fact
that the characteristics of trainees differed from those
of a comparison group drawn from the population.
Because of targeting, the endogeneity problems associ-
ated with digital advertising are potentially more severe:
advertising exposure is determined by a sophisticated
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machine-learning algorithm using detailed data on in-
dividual user behavior. We explore whether the im-
provements in observationalmethods for causal inference,
paired with large-sample, individual-level data, are suf-
ficient to replicate experimental results in a large industry
that relies on such methods.

Of course, our results should not be interpreted to
suggest that causal inference methods are unable to
replicate experimental findings in all settings. For ex-
ample, Eckles and Bakshy (2017), using Facebook data
to measure peer effects (not advertising effects), shows
that high-dimensional causal inference models are able
to eliminate most of the bias of naı̈ve observational
methods.Moreover, thesemethodsmaywork to recover
the causal effects of advertising that is not subject to the
same degree of targeting as advertising on Facebook.

We are not the first to attempt to estimate the per-
formance of observational methods in gauging digital
advertising effectiveness.4 Lewis et al. (2011) is the first
paper to compare RCT estimates with results obtained
using observational methods (comparing exposed
versus unexposed users and regression). They faced the
challenge of finding a valid control group of unexposed
users: their experiment exposed 95% of all U.S.-based
traffic to the focal ad, leading them to use a matched
sample of unexposed international users. Blake et al.
(2015) documents that nonexperimental measurement
can lead to highly suboptimal spending decisions for
online search ads. However, in contrast to our paper,
Blake et al. (2015) use an aggregate difference-in-
differences approach based on randomization at the
level of 210 media markets as the experimental bench-
mark and therefore did not implement individual-level
causal inference methods.

This paper proceeds as follows. We first describe
the experimental design of the 15 advertising RCTs
we analyze: how advertising works at Facebook, how
Facebook implements RCTs, and what determines ad-
vertising exposure. In Section 3, we introduce the
potential-outcomes notation now standard for causal
inference and relate it to the design of our RCTs. In
Section 4, we explain the set of observational methods
we analyze. Section 5 presents the data generated
by the 15 RCTs. Section 6 discusses identification and
estimation issues and presents diagnostics. Section 7
shows the results for one example ad campaign in
detail and summarizes findings for all remaining ad
campaigns. Section 8 assesses the role of unobservables
in reducing bias. Section 9 offers concluding remarks.

2. Experimental Design
Here we describe how Facebook conducts advertising
campaign experiments. Facebook enables advertisers
to run experiments to measure marketing-campaign
effectiveness, test out different marketing tactics, and
make more informed budgeting decisions.5 We define

the central measurement question, discuss how users
are assigned to the test group, and highlight the en-
dogenous sources of exposure to an ad.

2.1. Advertising on Facebook
We focus exclusively on campaigns in which the ad-
vertiser had a particular “direct response” outcome in
mind, for example, to increase sales of a new product.6

The industry refers to these as “conversion outcomes.”
In each study, the advertiser measured conversion
outcomes using a piece of Facebook-provided code
(“conversion pixel”) embedded on the advertiser’s web
pages, indicating whether a user visited that page.7

Different placement of the pixels can measure different
conversion outcomes. A conversion pixel embedded on
a checkout-confirmation page, for example, measures a
purchase outcome. A conversion pixel on a registration-
confirmation page measures a registration outcome, and
so on. These pixels allow the advertiser (and Facebook) to
record conversions for users in both the control and test
group and do not require the user to click on the ad to
measure conversion outcomes.
Facebook’s ability to track users via a “single-user

login” across devices and sessions represents a sig-
nificant measurement advantage over more common
cookie-based approaches. First, this approach helps
ensure the integrity of the random assignment mech-
anism, because a user’s assignment can be maintained
persistently throughout the campaign and prevents
control users from being inadvertently shown an ad.
Second, Facebook can associate all exposures and
conversions across devices and sessions with a par-
ticular user. Such cross-device tracking is important
because users are frequently exposed to advertising on
a mobile device but might subsequently convert on a
tablet or computer.
Figure 1 displays where a Facebook user accessing

the site from a desktop/laptop or mobile device might
see ads. In the middle is the “News Feed,” where new
stories appear with content as the user scrolls down or
the site automatically refreshes. Ads appear as tiles in
the News Feed, with a smaller portion served to the right
of the page. News Feed ads are an example of “native
advertising” because they appear with organic content.
On mobile devices, only the News Feed is visible; no ads
appear on the right side. The rate at which Facebook
serves ads in the News Feed is carefully managed at
the site level, independent of any ad experiment.
An advertising campaign is a collection of related

advertisements (“creatives”) served during the cam-
paign period. A campaign may have multiple associ-
ated ads, as Figure 2 illustrates for Jasper’s Market,
a fictitious advertiser. Although imagery and text vary
across ads in a campaign, the overall message is gen-
erally consistent. We evaluate the effect of the whole
campaign, not the effects of specific ads.
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As with most online advertising, each impression
is the result of an underlying auction. The auction is
a modified version of a second-price auction such
that the winning bidder pays only the minimum
amount necessary to have won the auction.8 The
auction plays a role in the experiment’s implementation
and in generating endogenous variation in expo-
sures, both of which are discussed in the following
sections.

2.2. Experimental Implementation
An experiment begins with the advertiser deciding
which consumers to target with a marketing campaign,
such as all women between the ages of 18 and 54 years.
These targeting rules define the relevant set of users
in the study. Each user is randomly assigned to the
control or test group on the basis of a proportion se-
lected by the advertiser, in consultation with Facebook.
Control-groupmembers are never exposed to campaign

Figure 1. (ColorQ: 25 online) Facebook, 26 Desktop and Mobile-Ad Placement

SourceQ: 27 . https://www.facebook.com/business/ads-guide.

Figure 2. (Color online) Example of Three Display Ads for One Campaign

Source. https://www.facebook.com/business/ads-guide.
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ads during the study; those in the test group are eligible
to see the campaign’s ads. Facebook avoids con-
taminating the control group with exposed users,
owing to its single-user login feature. Whether test-group
users are ultimately exposed to the ads depends on
factors such as whether the user accessed Facebook
during the study period (we discuss these factors and
their implications in the next subsection). Thus, we
observe three user groups: control-unexposed, test-
unexposed, and test-exposed.

Next, we consider what ads the control group should
be shown in place of the advertiser’s campaign. This
choice defines the counterfactual of interest. To eval-
uate campaign effectiveness, an advertiser requires the
control condition to estimate the outcomes that would
have occurredwithout the campaign. Thus, the control-
condition ads should be the ads that would have been
served if the advertiser’s campaign had not been run on
Facebook.

We illustrate this process using a hypothetical, styl-
ized example in Figure 3. Consider two users in the test
and control groups. Suppose that at a given moment,
Jasper’s Market wins the auction to display an im-
pression for the test-group user, as seen in Figure 3(a).
Imagine the control-group user, who occupies a par-
allel world to that of the test user, would have been
served the same ad had this user been in the test group.
However, the platform, recognizing the user’s assign-
ment to the control group, prevents the focal ad from
appearing. As Figure 3(b) shows, instead the auction’s
second-place ad is served to the control user because
that user would havewon the auction if the focal ad had
not existed.

We must emphasize that this experimental mecha-
nism is relevant only for users in the control group,
because it substitutes the second-place ad for the focal
ad if the focal ad wins the auction for what they see. In
the example, Waterford Lux Resorts is the “control ad”
shown to the control user. At another instance when
Jasper’s Market would have won the auction, a dif-
ferent advertiser might occupy the second-place rank.
Thus, rather than a single control ad, users in the
control condition are shown the full distribution of ads
they would have seen if the advertiser’s campaign had
not run.

This approach relies on the auction mechanism’s sta-
bility to the removal of the focal ad. That is, the second-
place ad is the same whether the focal advertiser par-
ticipated in the auction or not. This assumes other ad-
vertisers’ strategies are fixed in the short run and do not
respond to the fact that the focal advertiser is running
the campaign. This assumption is reasonable because
campaigns are not preannounced and occur over rela-
tively short periods. Furthermore, Facebook’s scale
makes gauging other campaigns’ scope or targeting
objectives hard for advertisers.

As with any experiment, this one yields an estimate
of the campaign’s average treatment effect, conditional
on all market conditions—such as marketing activities
the advertiser conducts in other channels (e.g., search,
TV) and its competitors’ activities. The estimated lift
the experiment yields may not generalize to similar
future campaigns if market conditions change. If ad-
vertising effects are nonlinear across media, the ex-
periment measures something akin to the average net
effect of the campaign given the distribution of non-
Facebook advertising exposures across the sample.

2.3. Determinants of Advertising Exposure
In the experiments, compliance is perfect for users in
the control group, who are never shown campaign ads.
However, compliance is one-sided in the test group,
where exposure (receipt of treatment) is an endogenous
outcome that depends on factors related to the user,
platform, and advertisers. These factors generate sys-
tematic differences (i.e., selection bias) between ex-
posed and unexposed test-group users. Three features
of online advertising environments in general make the
selection bias of exposure particularly significant.

2.3.1. User-Induced Endogeneity. The first mechanism
that drives selection was coined “activity bias” when
first identified by Lewis et al. (2011). In our context,
activity bias arises because a user must visit Facebook
during the campaign to be exposed. If conversion is
a purely digital outcome (e.g., online purchase, regis-
tration), exposed users will be more likely to convert
merely because they happened to be online during
the campaign. For example, a vacationing target-group
user may be less likely to visit Facebook and therefore
miss the ad campaign. What leads to endogeneity is
that the user may also be less likely to engage in any
online activities, such as online purchasing. Thus, the
conversion rate of the unexposed group provides a
biased estimate of the conversion rate of the exposed
group had it not been exposed.

2.3.2. Targeting-Induced Endogeneity. The targeting
criteria for the campaign determines the pool of po-
tential users who may be assigned to the test or control
group at the start of the campaign. Although these
criteria do not change once the campaign begins, mod-
ern advertising delivery systems optimize who are
shown ads. Multiple targeting objectives exist, with
the most common being maximizing the number of im-
pressions, click-through rate, or purchase. As a cam-
paign progresses, the delivery system learns which
types of users are most likely to meet the objective, and
gradually the system starts to favor showing ads to
users it expects are most likely to meet the objective.
To implement this, the delivery system upweights or
downweights the auction bids of different types of
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users within the target group. As a result, conditional
on the advertiser’s bid, the probability of exposure in-
creases or decreases for different users.

Assessing ad effectiveness by comparing exposed
versus unexposed consumers will, therefore, overstate
the effectiveness of advertising because exposed users
were specifically chosen on the basis of their higher
conversion rates. In general, this mechanism will lead
to upwardly biased ad effects, but there are cases in
which the bias could run in the opposite direction. One
example is if the ad campaign is set to optimize for
clicks but the advertiser still tracks purchases. Users

who are more likely to click on an ad (so-called “clicky
users”) may also be less likely to purchase the product.
Note that the implementation of this system at

Facebook does not invalidate experimentation, because
the upweighting or downweighting of bids is applied
equally to users in the test and control group. Some
users in the test group may become more likely to see
the ad if the system observes similar users converting
in the early stages of the campaign. The key point is that
the same process occurs for users in the control group: the
focal ad will receive more weight in the auction for these
users and might win the auction more frequently—except

Figure 3. (Color online) Determination of Control Ads in Facebook Experiments
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that, for members of the control group, the focal ad is
replaced “at the last moment” by the runner up and is thus
never shown.Asa result, the control group remains a valid
counterfactual for outcomes in the treatment group,
even under ad-targeting optimization.

2.3.3. Competition-Induced Endogeneity. Ads are de-
livered if the advertiser wins the auction for a particular
impression. Winning the auction implies the advertiser
outbidother advertisers competing for the same impression.

Therefore, an advertiser’s ads are more likely to be
shown to users the advertiser values highly, most often
those with a higher expected conversion probability.
Even if an advertiser’s actions do not produce any
selection bias, the advertiser can nevertheless end up
with selection bias in exposures because of what an-
other advertiser does. For example, if, during the
campaign period, another advertiser bids high on 18- to
54-year-old women who are also mothers, the likeli-
hood that mothers will not be exposed to the focal
campaign is higher. A case that could lead to down-
ward bias is when other firms sell complementary
products and target the same users as a focal advertiser.
If these firms win impressions at the expense of the focal
advertiser and obtain some conversions as a result, the
resulting set of unexposed usersmay nowbemore likely
to buy the focal firm’s product.

In the RCT, we address potential selection bias by
leveraging the random-assignment mechanism and in-
formation on whether a user receives treatment. For the
observationalmodels, we discard the randomized control
group and address the selection bias by relying solely on
the treatment status and observables in the test group.

3. Analysis of the RCT
We use the potential-outcomes notation now standard
in the literature on experimental and nonexperimental
programevaluation.Our exposition in this section and the
next draws heavily on material in Imbens (2004), Imbens
and Wooldridge (2009), and Imbens and Rubin (2015).

3.1. Definitions and Assumptions
Each ad study contains N individuals (units) indexed
by i � 1, . . . ,N drawn from an infinite population of
interest. Individuals are randomly assigned to test or
control conditions through Zi � {0, 1}. Exposure to ads
is given by the indicatorWi(Zi) � {0, 1}. Users assigned
to the control condition are never exposed to any ads
from the study, Wi(Zi � 0) � 0. However, assignment
to the test condition does not guarantee a user is ex-
posed, such that Wi(Zi � 1) � {0, 1} is an endogenous
outcome.We observe a set of covariatesXi ∈ X ⊂ RP for
each user that are unaffected by the experiment. We do
not index any variable by a study-specific subscript,
because all analysis takes place within a study.

Given an assignment Zi and a treatment Wi(Zi), the
potential outcomes are Yi(Zi,Wi(Zi)) � {0, 1}. Under
one-sided noncompliance, the observed outcome is

Yobs
i � Yi(Zi,Wobs

i ) � Yi(Zi,Wi(Zi))

�
Yi(0, 0), if Zi � 0,Wobs

i � 0
Yi(1, 0), if Zi � 1,Wobs

i � 0
Yi(1, 1), if Zi � 1,Wobs

i � 1.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (1)

We designate the observed values Yobs
i andWobs

i to help
distinguish them from their potential outcomes.
Valid inference requires several standard assump-

tions. First, a user can receive only one version of the
treatment, and a user’s treatment assignment does not
interfere with another user’s outcomes. This pair of
conditions is commonly known as the stable unit treatment
value assumption (SUTVA), a term coined in Rubin (1978).
Our setting likely satisfies both conditions. Facebook’s
ability to track individuals prevents the platform from
inadvertently showing the wrong treatment to a given
user. Noninterference could be violated if, for exam-
ple, users in the test group share ads with users in the
control group. However, users are unaware of both
the existence of the experiment and their assignment
status. Moreover, if test users shared ads with control
users on Facebook, we would be able to observe those
impressions.9

The second assumption is that assignment to treat-
ment is random, or that the distribution of Zi is in-
dependent of all potential outcomes Yi(Zi,Wi(Zi)) and
both potential treatments Wi(Zi). Note that although
assignment through Zi is random, the received Wi is
not necessarily random, owing to one-sided noncom-
pliance. This assumption is untestable because we do
not observe all potential outcomes and treatments. We
have performed a variety of randomization checks on
each study and failed tofind any evidence against proper
randomization.
In principle, we could focus on the relationship be-

tween the random assignment Zi and outcome Yi, ig-
noring information in Wi. Such an intent-to-treat (ITT)
analysis only requires the two assumptions above.
However, the primary goal of this paper is to com-

pare treatment effects from RCTs with those obtained
from observational methods; thus, the treatment effects
must be inherently comparable. Because we exclude
the control group from our analysis using the obser-
vational methods, we cannot produce ITT estimates
using both approaches. Instead, all our analysis com-
pares the average treatment effect on the treated
(ATT)—the effect of the ads on users who are actually
exposed to ads. Depending on their goals, managers
evaluating ad effectiveness might be interested in the
ITT, ATT, or both. We focus on the ATT to facilitate
comparison with the results from the observational
models.
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TheATT requires onemore assumption: an exclusion
restriction,

Yi(0,w) � Yi(1,w), for all w ∈ {0, 1},
such that assignment affects a user’s outcome only
through receipt of the treatment. Because users are un-
aware of their assignment status, only exposure should
affect outcomes. This permits Zi to serve as an instru-
mental variable (IV) to recover the ATT.

When we usually interpret either the ITT or ATT, it is
always conditional on the entire treatment (e.g., a specific
ad delivered on a particular day and time on a specific
TV network) and who is targeted with the treatment.
In the context of online advertising, the “entire treat-
ment” includes the advertising platform, including its
ad-optimization system.Hence, the ITT andATT should
be interpreted as conditional on the platform’s ad-
optimization system.

3.2. Causal Effects in the RCT
Given the assumptions, the ITT effect of assignment
on outcomes compares across random-assignment
status,

ITTY � E Y(1,W(1)) − Y(0,W(0))[ ], (2)

with the sample analog being

ÎTTY � 1
N

∑N
i�1

Yi(1,Wobs
i ) − Yi(0,Wobs

i )
( )

. (3)

As noted earlier, our focus is on the ATT,

ATT � E Y(1,W(1)) − Y(0,W(0))|W(1) � 1[ ]. (4)

Note that the ATT is inherently conditional on the set
of users who end up being exposed (or treated) in a
particular experiment. As different experiments target
individuals using different X’s, the interpretation of the
ATTvaries across experiments. Imbens andAngrist (1994)
show the ATT can be expressed in an IV framework,
relying on the exclusion restriction. The ATT is the ITT
effect on the outcome, divided by the ITT effect on the
receipt of treatment:

τ � ITTY

ITTW
� E[Y(1,W(1))] − E[Y(0,W(0))]

E[W(1)] − E[W(0)] . (5)

With full compliance in the control, such thatWi(0) � 0
for all users, and complete randomization of Zi, the
denominator simplifies to ITTW � E[W(1)], or the pro-
portion in the test group who take up the treatment. In
summary, we go from ITT to ATT by using the (exog-
enous) treatment assignment Z as an instrument for
(endogenous) exposure W.

An intuitive way to derive the relationship between
the ITT and the ATT is to decompose the ITT outcome
effect for the entire sample as the weighted average
of the effects for two groups of users: compliers and

noncompliers. Compliers are users assigned to the test
condition who receive the treatment, Wi(1) � 1, and
noncompliers are users assigned to the test condition
who do not receive the treatment,Wi(1) � 0. The overall
ITT effect can be expressed as

ITTY � ITTY,co · πco + ITTY,nc · (1 − πco), (6)

where πco � E[W(1)] is the share of compliers. The
exclusion restriction assumes unexposed users have
the same outcomes, regardless of whether they were
in treatment or control, Yi(1, 0) � Yi(0, 0). This implies
ITTY,nc � E Y(1, 0) − Y(0, 0)[ ] � 0. Thus, ITTY,co can be
expressed as the ITT effect divided by the share of
compliers,

τ ≡ ATT ≡ ITTY,co � ITTY

πco
. (7)

In a sense, scaling ITTY by the inverse of πco “undilutes”
the ITT effect according to the share of users who actually
received treatment in the test group (the compliers).
Imbens and Angrist (1994) refer to this quantity as the
local average treatment effect (LATE) and demonstrate
its relationship to IV with heterogeneous treatment
effects. If the sample contains no “always-takers” and
no “defiers,”which is true in our experimental design
with one-sided noncompliance, the LATE is equal to
the ATT.

3.3. Lift
To help summarize outcomes across advertising stud-
ies, we report most results in terms of lift, the incremen-
tal conversion rate among treated users expressed as a
percentage:

τ� �
ΔConversion rate due to ads in

the treated group
Conversion rate of the treated group

if they had not been treated

� τ

E[Yobs|Z � 1,Wobs � 1] − τ
. (8)

The denominator is the estimated conversion rate of
the treated group if they had not actually been treated.
Reporting the lift facilitates comparison of advertising
effects across studies because it normalizes the results
according to the treated group’s baseline conversion
rate, which can vary significantly with study charac-
teristics (e.g., advertiser’s identity, outcome of interest).
One downside of using lift is that differences between
methods can seem large when the treated group’s base-
line conversion rate is small.
Other papers have compared advertising effec-

tiveness across campaigns by calculating advertising
return on investment (ROI) (Lewis and Rao 2015), but
we lack the data on profit margins from sales to calcu-
late ROI.10
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4. Observational Approaches
Here we present the observational methods we com-
parewith estimates from the RCT. The following thought
experiment motivates our analysis. Rather than con-
ducting an RCT, an advertiser (or a third party acting
on the advertiser’s behalf) followed customary prac-
tice by choosing a target sample and making all users
eligible to see the ad. Although all users in the sample
are eligible to see the ad, only a subsample is even-
tually exposed. To estimate the treatment effect, the
advertiser compares the outcomes in the exposed group
with the outcomes in the unexposed group. This approach
is equivalent to creating a test sample without a control
group held out.

We use a set of methods that impose various degrees
of structure to recover the treatment effects. Our goal
is twofold: to ensure we cover the range of obser-
vational methods commonly used by academics and
practitioners and to understand the extent to which
more-sophisticated techniques are potentially better
at reducing the bias of estimates compared with RCT
estimates. The observational methods we use rely on
a combination of approaches: matching, stratification,
and regression.11

Both academics and practitioners rely on the methods
we implement. In the context of measuring advertising
effectiveness, matching methods appear in a variety of
related academic work, such as comparing the efficacy
of internet and TV ads for brand building (Draganska
et al. 2014), measuring the effects of firm-generated
social media on customer metrics (Kumar et al. 2016),
assessingwhether access to digital video recorders affects
sales of advertised products (Bronnenberg et al. 2010),
the effectiveness of pharmaceutical detailing (Rubin
andWaterman 2007), the impact of mutual fund name
changes on subsequent investment inflows (Cooper et al.
2005), and evaluating alcohol advertising targeted at
adolescents (Ellickson et al. 2005).

In industry, many advertisers rely on third-party
measurement vendors, such as comScore, Nielsen, and
Nielsen Catalina Solutions, to perform their ad effec-
tiveness measurement. The advertiser may also rely on
an advertising agency, which in turn uses the vendor.
Vendors use a combination of matching and regres-
sion methods to evaluate various marketing programs
(Abraham 2008, comScore 2010, Klein and Wood 2013,
Berkovich and Wood 2016). Although obtaining de-
tailed information on the exact nature of these vendors’
implementations is difficult, discussions with several
industry experts and public case studies confirm these
methods are in active use.12

Our understanding of the basic approach used in
industry is as follows: the vendor has a large database
of individual consumers and potentially supplements
these data with the advertiser’s proprietary data on

consumer demographics and potentially outcomes. The
advertising platform provides a set of (hashed) email
addresses to the vendor. By applying the same hashing
function to its own data, the vendor is able to determine
a set of users whowere exposed to ads. The vendor then
uses the variables contained in its database of individual
consumers to identify comparable consumers who were
not exposed (the “forensic” controls). Finally, the vendor
compares the measured outcome between the exposed
and comparable unexposed users.
The variables available to vendors to match vary

greatly by vendor and industry. Typically, matches are
performedondemographic information about consumers
with different levels of sophistication in the matching
process. In some cases, depending on the consumer panel
of the vendor, variables may include measures of past
purchase history and measures of past online activity.
Our approach is to use a sequence of variables that

approximate the data that would be available to ven-
dors as inputs into their chosen observational methods
(see Section 5 for a detailed description of our data).

4.1. Definitions and Assumptions
To mimic the observational setting with the RCT data,
we ignore the control group and focus exclusively on
the test group. It is helpful to abuse notation slightly by
redefining

Yi(Wi) ≡ Yi(Zi � 1,Wi). (9)

For each user in the observational data, we observe the
triple (Yobs

i ,Wi,Xi), where the realized outcome is

Yobs
i ≡ Yi(Wi) � Yi(0) if Wi � 0

Yi(1) if Wi � 1.

{
(10)

The ATT obtained using observational method m is

τm � E Y(1) − Y(0)|W � 1[ ], (11)

and the lift is

τm� � τm

E[Yobs|W � 1] − τm
. (12)

As before, the denominator in the lift is an estimate of
the conversion rate of exposed users if they had been
unexposed.
If treatment status Wi were in fact random and in-

dependent of Xi, we could compare the conversion
rates of exposed to unexposed users (Abraham 2008).
The ATT effect would be

τeu � E[Y(1) − Y(0)|X] � E[Y(1)] − E[Y(0)] (13)

with corresponding lift of

τeu� � E[Y(1)] − E[Y(0)]
E[Y(0)] .
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Estimates based on comparing exposed and unexposed
users serve as a naı̈ve baseline.

In reality, Wi is unlikely to be independent of Xi,
especially in the world of online advertising. The effect
τeu will contain selection bias due to the relationship
between user characteristics, treatment, and outcomes.
Observational methods attempt to correct for this
bias. Accomplishing this, beyond SUTVA, requires two
additional assumptions. The first is unconfoundedness:

Yi(0),Yi(1)( ) ⊥⊥ Wi | Xi, (14)

which states that, conditional onXi, potential outcomes
are independent of treatment status. Alternatively, this
assumption posits that no unobserved characteristics of
individuals associated with the treatment and potential
outcomes exist. This particular assumption is consid-
ered the most controversial and is untestable without
an experiment.

The second assumption is overlap, which requires a
positive probability of receiving treatment for all values
of the observables, such that

0< Pr(Wi � 1|Xi)< 1, ∀Xi ∈ X.

Overlap can be assessed before and after adjustments
are made to each group. Rosenbaum and Rubin (1983b)
refer to the combination of unconfoundedness and
overlap assumptions as strong ignorability.

The conditional probability of treatment given ob-
servables Xi is known as the propensity score,

e(x) ≡ Pr(Wi � 1|Xi � x). (15)

Under strong ignorability, RosenbaumandRubin (1983b)
establish that treatment assignment and the potential
outcomes are independent, conditional on the propen-
sity score,

Yi(0),Yi(1)( ) ⊥⊥ Wi | e(Xi). (16)

Given two individuals with the same propensity scores,
exposure status is as good as random. Thus, adjusting
for the propensity score eliminates the bias associated
with differences in the observables between treated and
untreated individuals. This result is central to many of
the observational methods widely used in the literature.

4.2. Observational Methods
4.2.1. Exact Matching. Matching is an intuitive method
for estimating treatment effects under strong igno-
rability. To estimate the ATT, matching methods find
untreated individuals similar to the treated individuals
and use the outcomes from the untreated individuals to
impute the missing potential outcomes for the treated
individuals. The difference between the actual outcome
and the imputed potential outcome is an estimate of the

individual-level treatment effect, and averaging over
treated individuals yields the ATT. This calculation high-
lights an appealing aspect of matching methods: they do
not assume a particular form for an outcome model.
The simplest approach is to compare treated and

untreated individuals who match exactly on a set of
observables Xem ⊂ X. To estimate the treatment effect,
for each exposed user i, we find the set of unexposed
users |}c

i | for whom Xem
i � Xem

j , j ∈ }c
i . For an exposed

user, we observe Yobs
i � Yi(1) and require an estimate of

the potential outcomeYi(0). An estimate of this potential
outcome is

Ŷi(0) � 1
}c

i

∑
j∈}c

i

Yobs
j . (17)

The exact matching estimator for the ATT is

τ̂em � 1
Ne

∑Ne

i�1
Wi Yi(1) − Ŷi(0)

( )
, (18)

where Ne � ∑N
i Wi is the number of exposed users (in

the test group).

4.2.2. Propensity Score Matching. Exact matching is
only feasible using a small set of discrete observables.
Generalizing to all the observables requires a similarity
metric to compare treated and untreated individuals.
One may match on all the observables Xi using a dis-
tance metric, such asMahalanobis distance (Rosenbaum
and Rubin 1985); but this metricmay notworkwell with
a large number of covariates (Gu and Rosenbaum 1993)
and can be computationally demanding.
To overcome this limitation, perhaps the most com-

mon matching approach is based on the propensity
score (Dehejia and Wahba 2002, Caliendo and Kopeinig
2008, Stuart 2010). Let e(x;φ) denote the model for the
propensity score parameterized by φ, the estimation of
which we discuss in Section 6.2. We match on the (es-
timated) log-odds ratio

�(x;φ) � ln
e(x;φ)

1 − e(x;φ)
( )

.

This transformation linearizes values on the unit in-
terval and can improve estimation (Rubin 2001).
To estimate the treatment effect, we find the M un-

exposed users with the closest propensity scores to each
exposed user. Matching is done with replacement be-
cause it can reduce bias, does not depend on the sort
order of the data, and is less computationally burden-
some. Let mc

i,k be the index of the (unexposed) control
user that is the kth closest to exposed user i based
on |e(xmc

i,k
;φ) − e(xi;φ)|. The set}c

i � {mc
i,1,m

c
i,2, . . . ,m

c
i,M}

contains the M closest observations for user i. For an
exposed user, we observe Yobs

i � Yi(1) and require an
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estimate of the potential outcome Yi(0). An estimate of
this potential outcome is

Ŷi(0) � 1
M

∑
j∈}c

i

Yobs
j . (19)

The propensity score matching estimator for the ATT is

τ̂ psm � 1
Ne

∑Ne

i�1
Wi Yi(1) − Ŷi(0)

( )
. (20)

4.2.3. Stratification. The computational burden of
matching on the propensity score can be further reduced
by stratification on the estimated propensity score (also
known as subclassification or blocking). After estimat-
ing the propensity score, the sample is divided into strata
(or blocks) such that within each stratum, the estimated
propensity scores are approximately constant.

Begin by partitioning the range of the linearized pro-
pensity scores into J intervals of [bj−1, bj), for j � 1, . . . , J.
Let Bij be an indicator that user i is contained in stratum j,

Bij � 1 · {bj−1 < �(xi,φ) ≤ bj}. (21)

Each stratum contains Nwj � ∑N
i�1 1 · {Wi � w}Bij obser-

vations with treatment w. The ATT within a stratum is
estimated as

τ̂ strat
j � 1

N1j

∑N
i�1

WiBijYi − 1
N0j

∑N
i�1

(1 −Wi)BijYi. (22)

The overall ATT is the weighted average of the within-
strata estimates, with weights corresponding to the
fraction of treated users in the stratum relative to all
treated users,

τ̂ strat � ∑J
j�1

N1j

N1
· τ̂ strat

j . (23)

One task that remains is to determine how to create the
strata and how many strata to create. Many researchers
follow the advice of Cochran (1968) and set J � 5 with
equal-sized strata. However, Eckles and Bakshy (2017)
suggest setting J such that the number of strata increases
with the sample size. We follow the approach proposed
in Imbens and Rubin (2015), which uses the variation in
the propensity scores to determine the number of strata
and their boundaries. In brief, the method recursively
splits the data at the median propensity score if the
two resulting strata have significantly different average
propensity scores. Starting with the full sample, this
process continues until the t-statistic comparing two
potential splits is below some threshold or if the new
stratum falls below a minimum sample size. One ap-
pealing aspect of this method is that more (narrower)
strata will be created in ranges of the data with greater
variation in propensity scores, precisely where having

more strata helps ensure the within-stratum variation
in propensity scores is minimal.

4.2.4. Regression Adjustment. Whereas exact match-
ing on observables, propensity score matching, and
stratification do not rely on an outcome model, another
class of methods relies on regression to predict the
relationship between treatment and outcomes. Perhaps
the simplest approach to estimating the causal effect of
advertising is a linear regression with covariates,

Yobs
i � α + β′Xi + τregWi + εi, (24)

where τreg is the ATT assuming strong ignorability. More
generally, we want to estimate the conditional expectation

μw(x) � E[Yobs|W � w,X � x]. (25)

Separate models could be estimated for each treatment
level. Given our focus on the ATT, we estimate only
μ0(x) to predict counterfactual outcomes for the treated
users. The most common approach is a linear model of
the form μw(Xi; βw) � β′wXi, with flexible functions ofXi.
Given some estimator μ0(Xi; β̂0), the regression adjust-
ment (RA) estimate for the ATT is obtained through

τ̂ra � 1
Ne

∑N
i�1

Wi[Yobs
i − μ0(Xi; β̂0)]. (26)

Note the accuracy of this method depends on howwell
the covariate distribution for untreated users overlaps
the covariate distribution for treated users. Whereas
randomized experimentation guarantees such overlap,
observational data provide no such guarantee. If the
treated users have significantly different observables
comparedwith untreated users, μ0(Xi; β̂0) relies heavily
on extrapolation, which is likely to produce biased
estimates of the treatment effect in Equation (26).

4.2.5. Inverse-Probability-Weighted Regression Adjust-
ment. A variant of the RA estimator incorporates in-
formation in the propensity scores, borrowing from the
insights found in inverse-probability-weighted estima-
tors (Hirano et al. 2003). The estimated propensity scores
are used to form weights to help control for correlation
between treatment status and the covariates. Thismethod
belongs to a class of procedures that have the “doubly
robust” property (Robins and Ritov 1997), which means
the estimator is consistent even if one of the underlying
models—either the propensity model or the outcome
model—turns out to be misspecified.
The inverse-probability-weighed regression adjust-

ment (IPWRA) model estimates the exposure and out-
come models simultaneously:

min
{φ,β}

∑N
i�1

Wi
(Yi − μ0(Xi; β0))2

1 − e(Xi;φ)
[ ]

.
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Given the estimate β̂0 from the outcome model, Equa-
tion (26) is once again used to calculate the treatment
effect, τ̂ipwra. In practice, the exposure model, outcome
model, andATT are estimated simultaneously using two-
step GMMQ: 8 to obtain efficient estimates and robust
standard errors (Wooldridge 2007).

4.2.6. Stratification andRegression. One problemwith
regression estimators, even those that weigh by the in-
verse propensity scores, is that treatment effects can be
sensitive to differences in the covariate distributions for
the treated and untreated groups. If these distributions
differ, these estimators rely heavily on extrapolation.

A particularly flexible approach, advocated by Imbens
(2015) and Eckles and Bakshy (2017), is to combine re-
gression with stratification on the estimated propensity
score. After estimating the propensity score, the sample
is divided into strata with approximately constant esti-
mated propensity scores. Regression on the outcome is
usedwithin each stratum to estimate the treatment effect
and to correct for any remaining imbalance. The idea is
that the covariate distribution within a stratum should
be relatively balanced, so the within-stratum regression
is less prone to extrapolate.

Stratification follows the recursive procedure out-
lined after Equation (23), with a regression within each
strata j to estimate the strata-specific ATT:

Yi � αj + τ
stratreg
j ·Wi + β′jXi + εi. (27)

As in Equation (23), this method produces a set of J
estimates that can be averaged appropriately to cal-
culate the ATT:

τ̂ stratreg � ∑J
j�1

N1j

NT
· τstratregj . (28)

4.3. Alternative Methods and Discussion
The goal of each observational method we have dis-
cussed is to find and isolate the random variation that
exists in the data, while conditioning on the endoge-
nous variation. The latter is accomplished by matching
on covariates (directly or via a propensity score), by
controlling for covariates in an outcomemodel, or both.

A critique of these observational methods is that so-
phisticated ad-targeting systems aim for ad exposure
that is deterministic and based on a machine-learning
algorithm. In the limit, such ad-targeting systemswould
completely eliminate any random variation in exposure,
in which case the observational methods we have dis-
cussed in Section 4.2would fail. As an example, consider
propensity scoring. If we observed the exact data and
structure used by the ad-targeting systems, the pro-
pensity score distribution would collapse to discrete
masses at 0 and 1. This is not surprising, because a
deterministic exposure system implies that common

support in observables between treated and untreated
observations cannot exist. As a result, any matching sys-
tem would fail, as would any regression approach that
requires common support on observables.
If ad-targeting systems were completely determinis-

tic, identification of causal effects would have to rely on
alternative observational methods, for example, regres-
sion discontinuity (RD). If the ad-targeting rules were
known, an RD design would identify users whose ob-
servables are very similar but ended up triggering a
different exposure decision by the ad-targeting system.
In practice, implementing such an RD approach would
require extensive collaboration with the advertising plat-
form, because the advertiser would need to know the full
data and structure used by the ad-targeting system.
Given that advertisers avoid RCTs partially because
RCTs require the collaboration of the platform, RD-type
observationalmethodswould unlikely bemore popular.
Moreover, RD-type observational methods are unlikely
to overcome the problem that some platforms cannot
implement RCTs: if a platform had the sophistication
to run an RD design, it would probably also have the
sophistication to implement RCTs.
As of now, ad-targeting systems have not eliminated

all exogenous reasons a given person would be ex-
posed to an ad campaign, whereas a probabilistically
equivalent person would not. As we discuss in detail in
Section 6.1, in our context, quasi-random variation in
exposure has at least three sources: user-level variation
in visits to Facebook, variation in Facebook’s pacing of
ad delivery over the campaign’s predefined window,
and variation in the remaining campaign budget. As a
result, the observational methods we have discussed in
Section 4.2 need not fail. However, as ad-targeting sys-
tems become more sophisticated, such failure is increas-
ingly likely.

5. Data
The 15 advertising studies analyzed in this paper were
chosen by two of its authors (BRG and FZ) according to
criteria tomake them suitable for comparing common ad-
effectiveness methodologies: conducted after January
2015, when Facebook first made the experimentation
platform available to sufficiently large advertisers; min-
imum sample size of 1 million users; business-relevant
conversion tracking in place; no retargeting campaign by
the advertiser; and no significant sharing of ads between
users.13 The window during which we obtained studies
for this paper was from January to September 2015.
Although the sample of studies is not representative
of all Facebook advertising (nor is it intended to be), it
covers a varied set of verticals (retail, financial services,
e-commerce, telecom, and tech), represents a range of
sample sizes, and contains amix of test/control splits. All
studies were U.S.-based RCTs, and we restrict attention
to users aged 18 years and older.
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Table 1 provides summary statistics for each study.
The studies range in size, with the smallest containing
approximately 2 million users and the largest approx-
imately 140million, andwith amix of test/control splits.
The studies also differed by the conversion outcome(s)
the advertiser measured. In all but one study, the ad-
vertiser placed a conversion pixel on the checkout-
confirmation page to measure whether a Facebook user
purchased from the advertiser. In five studies, the ad-
vertiser placed a conversion pixel to measure whether
a consumer registered with the advertiser. In three
studies, the advertiser placed a conversion pixel on a
(landing) page of interest to the advertiser (termed a
“page view”).

Table 2 provides information on the variables we
observe. For most of the observational models, we
implement a sequence of specifications corresponding
to the grouping of covariates. The first two groups of
variables are at the user level but are time- and study-
invariant. The third group is indexed by user and time
but not by study. The fourth group is at the user, time,
and study level. We believe the third and fourth groups
of covariates should especially help us account for ac-
tivity bias in the estimation of treatment effects. The
variable sets are

1. (FB Variables) The first specification includes
variable set 1 from Table 2, which are common Face-
book variables, such as age, gender, how long users
have been on Facebook, how many Facebook friends
they have, their phone operating system, and other
characteristics.

2. (Census Variables) In addition to the variables in
1, this specification uses Facebook’s estimate of the
user’s zip code to associate with each user nearly 40
variables drawn from the most recent Census and
American Communities Surveys (ACS). These data
are only used in our evaluation of the observational

models and are not used by Facebook’s advertising
auction system.

3. (User-Activity Variables) In addition to the var-
iables in 2, we incorporate data on a user’s overall level
of activity on Facebook. Specifically, for each user and
device type (desktop, mobile, or other), the raw activity
level is measured as the total number of ad impressions
served to that user in the week before the start of any
given study—across all Facebook ad campaigns, not
just the campaigns in our sample. This measure cap-
tures not only how long a user stays on Facebook but
also how much the user scrolls through items in his or
her news feed. Our data transform this raw measure
into deciles that describe where, for each device, a user
ranks in the distribution of all users. We include a full
set of dummy variables across deciles and devices to
allow for the greatest flexibility.

4. (Match Score) In addition to the variables in 3, we
add a composite metric of Facebook data that sum-
marizes thousands of behavioral variables and is a
machine-learning-based metric Facebook uses to con-
struct target audiences similar to consumers an ad-
vertiser has identified as desirable.14 For each study,
this metric represents a measure of the similarity
between exposed users and all other users from a
machine-learning model with thousands of features.
Including this variable, and functions of it, in esti-
mating our propensity score allows us to condition on
a summary statistic for data beyond which we had
direct access and to move beyond concerns that a more
flexible propensity-score model might change the
results.
In using this sequence of variable sets, our intention

is to approximate the data that would be available
to vendors as inputs into their chosen observational
methods (with the hope that our data quality exceeds
what many vendors have available to them). Clearly,

Table 1. Summary Statistics for All Studies

Study Vertical Observations Test (%) Control (%) Impressions Clicks Conversions Outcomes

1 Retail 2,427,494 50 50 39,167,679 45,401 8,767 C, R
2 Financial services 86,183,523 85 15 577,005,340 247,122 95,305 C, P
3 E-commerce 4,672,112 50 50 7,655,089 48,005 61,273 C
4 Retail 25,553,093 70 30 14,261,207 474,341 4,935 C
5 E-commerce 18,486,000 50 50 7,334,636 89,649 226,817 C, R, P
6 Telecom 141,254,650 75 25 590,377,329 5,914,424 867,033 P
7 Retail 67,398,350 17 83 61,248,021 139,471 127,976 C
8 E-commerce 8,333,319 50 50 2,250,984 204,688 4,102 C, R
9 E-commerce 71,068,955 75 25 35,197,874 222,050 113,531 C

10 Tech 1,955,375 60 40 2,943,890 22,390 7,625 C, R
11 E-commerce 13,339,044 50 50 11,633,187 106,534 225,241 C
12 Retail 5,566,367 50 50 10,070,742 54,423 215,227 C
13 E-commerce 3,716,015 77 23 2,121,967 22,305 7,518 C, R
14 E-commerce 86,766,019 80 20 36,814,315 471,501 15,722 C
15 Retail 9,753,847 50 50 8,750,270 19,365 76,177 C

Note. C, checkout; P, page view; R, registration.
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our approach has its limitations in that we do not
observe precampaign outcome histories that vendors
might have received from an advertiser. Therefore, one
can interpret our exercise as being most comparable to

what an advertiser would have at their disposal for
new customer acquisition.
To check whether the randomization of the RCTs was

implemented correctly, we compared means across test

Table 2. Description of Variables

Set Variable Description Source

1 age Age of user FB
1 gender 1 = female, 2 = male, 3 = other/unknown FB
1 rel_status Married, engaged, in relationship, single, other FB
1 FB age Days since user joined FB FB
1 friends No. of friends FB
1 num_initiated No. of friend requests sent FB
1 web_L7 No. of last 7 days accessed FB by desktop FB
1 web_L28 No. of last 28 days accessed FB by desktop FB
1 mobile_L7 No. of last 7 days accessed FB by mobile FB
1 mobile_L28 No. of last 28 days accessed FB by mobile FB
1 mobile_phone_OS Operating system of primary phone (if exists) FB
1 tablet_OS Operating system of primary tablet (if exists) FB
1 region Region of user’s residence FB
1 zip ZIP code of user’s residence FB
2 population Population in ZIP code ACS
2 housingunits No. of housing units ACS
2 pctblack % Black residences ACS
2 pctasian % Asian residences ACS
2 pctwhite % White residences ACS
2 pcthisp % Hispanic residences ACS
2 pctunder18 % Residents under age 18 years ACS
2 pctmarriedhh % Married households ACS
2 yearbuilt Average year residences built ACS
2 pcths % Residents with at most high school degree ACS
2 pctcol % Residents with at most college degree ACS
2 pctgrad % Residents with graduate degree ACS
2 pctbusfinance % Working in business/finance ACS
2 pctstem % Working in STEM ACS
2 pctprofessional % Working in professional jobs ACS
2 pcthealth % Working in health industry ACS
2 pctprotective % Working in protective services ACS
2 pctfood % Working in food industry ACS
2 pctmaintenance % Working in maintenance ACS
2 pcthousework % Working in home services ACS
2 pctsales % Working in sales ACS
2 pctadmin % Working in administration ACS
2 pctfarmfish % Working at farms or fisheries ACS
2 pctconstruction % Working in construction ACS
2 pctrepair % Working in repair industry ACS
2 pctproduction % Working in production industry ACS
2 pcttransportation % Working in transportation industry ACS
2 income Average household income ACS
2 medhhsize Median household size ACS
2 medhvalue Median household value ACS
2 vehperh Average vehicles per household ACS
2 pcthowned % Households who own a home ACS
2 pctvacant % Vacant residences ACS
2 pctunemployed % Unemployment ACS
2 pctlimenglish % Residents with limited English ACS
2 pctpoverty % Residents living below poverty line ACS
3 mobile_activity Decile of users’ FB activity on mobile devices FB
3 desktop_activity Decile of users’ FB activity on desktop devices FB
3 other_activity Decile of users’ FB activity on other devices FB
4 match_score Composite variable of FB data FB

Notes. First three rows are self-reported by the users. Region and ZIP code are determined by geo-
location. ACS data are from 2010. FB, Facebook; STEM, science, technology, engineering, and medicine.
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and control for each study and variable, resulting in
1,251 p-values. Of these, 10% are below 0.10, 4% are
below 0.05, and 0.9% are below 0.01. Under the null
hypothesis that the means are equal, the resulting
p-values from the hypothesis tests should be uniformly
distributed on the unit interval. Figure 4 suggests they
are, and indeed, a Kolmogorov-Smirnov test fails to
reject that the p-values are uniformly distributed on the
unit interval (p-value = 0.4). We have also been unable
to find evidence that particular variables might bemore
likely to exhibit imbalance. Thus, we find no evidence
that the randomization was implemented improperly.

6. Identification and Estimation
In this section, we discuss the sources of exogenous
variation in the data onwhich the observationalmethods
rely, how we estimate propensity scores and conduct
statistical inference, and provide evidence of covariate
balance. We follow the best practices detailed in
Imbens (2015) for using matching or propensity score
methods.

6.1. Identification
In the context of the observational data, which only rely
on the test group, highlighting the sources of (quasi-)
random variation on which the observational models
rely is useful. The goal of each observational method is
to find and isolate the random variation that exists,
while conditioning on the endogenous variation. Our
data contain at least three sources of random variation.

First, the advertising platform at Facebook generates
plausibly exogenous variation through the pacing of
ad delivery.15 At the start of a campaign, an advertiser
sets a budget and campaign length. The pacing system
determines how an advertiser’s budget is spent, with
the most common goal being to deliver ads smoothly
over the course of the campaign. Suppose an advertiser
runs a campaign with a budget of $100,000 over four
weeks. After one week, the platform observes that

$50,000 has already been spent, such that the campaign
might end prematurely by exhausting its budget. To
avert this outcome, the system will downweight the
advertiser’s bids in the impression auctions to slowdown
delivery. The pacing system continuously attempts to
learn the optimal bid adjustments, which vary depend-
ing on the type of ad, target audience, time of day, and
other factors, to satisfy the campaign’s goal. This implies
that ad impressions for a given campaign always contain
some variation that is plausibly exogenous to potential
user outcomes.
Second, the pacing is determined by an advertiser’s

budget and the budgets of all other advertisers com-
peting for the same target audience. Some advertisers’
bidding preferences for a particular audience of users
may be orthogonal to a focal advertiser’s conversion
outcome. For instance, a luxury automaker and a yo-
gurt manufacturer may both value the same segment of
consumers, but it is hard to imagine how one firm’s
outcomes could be related to the other firm’s ad bids.
The implication is that the budgets and bidding strategies
of other advertisers can affect the advertising delivery for
the focal advertiser in such a way that is likely indepen-
dent of the focal advertiser’s outcomes.
Third, quasi-random behavior is present in the timing

of users’ visits to Facebook. The timing of a user’s visit
throughout the day or week is likely influenced by a
plethora of random factors specific to that user (e.g., local
weather, work schedule, just missing a subway, etc.).
These mechanisms generate exogenous variation in

exposure across users and time within a campaign.
However, the three sources of endogenous selection
into exposure discussed in Section 2.3—user, targeting,
and competitive—generate confounding variation. Un-
der unconfoundedness, the assumption is that the ob-
servationalmodelswill rely on the observables to control
for the endogenous variation in the data while retaining
some of the exogenous variation. Each method controls
for this endogenous variation using slightly different
parametric forms. After using the observables to control
for the endogenous variation in selection, one risk is that
there may be little remaining variation with which to
estimate the treatment effect.

6.2. Estimation and Inference
The propensity score plays a central role in all but one
of the observational models. To be consistent with most
applications, we model the propensity score using a
logistic regression:

e(x;φ) � exp(x′φ)
1 + exp(x′φ) .

To obtain a sufficiently flexible specification, we con-
sider numerous functions of the covariates for inclusion
in the logistic regression. When possible, we convert

Figure 4. Distribution of p-Values Across All Studies
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integer-valued variables into a full set of dummies (e.g.,
one dummy for each age). We generate interactions
and higher-order terms, bothwithin and across the four
variable groups, between both dummies and contin-
uous covariates. This approach leads to a large number
of covariates, many of which likely have low predictive
power and thus might produce low precision in pro-
pensity score estimates.

To address this issue, we apply a variant of the LASSOQ: 9

(Tibshirani 1996) developed in Belloni et al. (2012) to
estimate the propensity score. This method provides an
iterative, data-dependent technique to select the LASSO
penalty parameter and to retain a subset of variables for
prediction. For methods with an outcome model (RA,
IPWRA, stratificationwith regression [STRATREG]), we
also apply the LASSO to predict Yi using all the vari-
ables, retaining the union of variable sets between the
treatment and outcomes models for estimation.16

We re-estimate the logistic regression with the subset
of variables identified above and apply a simple trim-
ming rule to improve overlap in the covariate distri-
butions. Following Imbens (2015), we trim observations
with e(x; φ̂)< 0.05 and e(x; φ̂)> 0.95 and re-estimate the
propensity score using the trimmed data. The resulting
propensity scores are the values used for treatment ef-
fects estimation.

Our analysis faces two challenges regarding proper
statistical inference. First, using ATT lift for inference is
complicated because it is a ratio. The standard error of
the lift’s numerator, the ATT, is available in each of the
methods we consider. In the denominator, the standard
error of the outcome Yi for exposed users is straight-
forward to calculate because, unlike the ATT, the term
does not rely on amodel and so it can be estimated using
the usual formula for the standard error of the mean of a
Bernoulli random variable. However, because the nu-
merator and denominator are clearly not independent,
we must calculate the covariance between them to es-
timate the standard error on the lift. A second compli-
cation is that we wish to conduct hypothesis tests com-
paring the RCT ATT lift τ�, defined in Equation (8), with
the lift obtained from each observational method, τm� .
Because the estimates are obtained from the same sam-
ple, we must account for the covariance between the
estimates when calculating a t-statistic:

t � τ� − τm���������������������������������������������
Var(τ�) + Var(τm� ) − 2Cov τ�, τ

m
�

( )√ . (29)

Signing the direction of this correlation is difficult; thus,
knowing the direction of the bias if we were to ignore
this term is hard.

We rely on the bootstrap to address both challenges.
First, we draw a sample of observations with replace-
ment from the complete RCT and estimate the ATT τ and
lift τ�. Next, we drop the control group and estimate

the treatment effects using an observational model m to
produce τm and τm� . We use the bootstrapped samples to
calculate standard errors and confidence intervals for each
estimate. In addition, we compute Cov(τ�, τm� ) to evaluate
the t-statistic above.17

To summarize, we follow these steps for a given
observational model m:
Step 1: Variable Selection.Apply themodified Lasso

of Belloni et al. (2012) to predict the treatment Wi,
producing X̃W ⊂ X. If model m includes an outcome
model, also apply the modified LASSO to predict Yi,
producing X̃Y ⊂ X. Retain the variables X̃ � X̃W ⋃

X̃Y.
Step 2: Analysis Using the Bootstrap. For s � 1,

2, . . . ,S, draw a sample of N users with replacement
from the complete experiment. For each bootstrap
replication s:

a. Estimate the RCT ATT τ and lift τ�.
b. Discard the control group.
c. Trimming: estimate the propensity score e(x, φ̂)

using x ∈ X̃, remove observations where e(x, φ̂)< 0.05
or e(x, φ̂)> 0.95, and re-estimate the propensity score
using the trimmed sample.

d. Use observational model m and the trimmed
data to estimate τm and lift τm� .
Step 3: Inference. Calculate standard errors and

confidence intervals using the bootstrap samples of (τ,
τm, τ�, τ

m
� ). We report bias-corrected standard errors

using S � 2000.

6.3. Assessing Balance
The key assumption for all the observational methods
is unconfoundedness, which implies treatment is in-
dependent of potential outcomes after conditioning
on observables. Rosenbaum and Rubin (1983b) show
that unconfoundedness conditional on the observables
implies unconfoundedness conditional on the propensity
score. This result is useful because matching on the scalar
propensity score is easier thanmatching on all observables.
However, because unconfoundedness is fundamen-

tally untestable, researchers have developed strategies
to understand whether unconfoundedness might be
plausible in any given empirical setting. In methods
that utilize propensity scores, a key requirement is that
the distribution of propensity scores be balanced across
exposed and unexposed users after matching. If such
balance is achieved, the hope is that the underlying
distribution of observables will also be balanced.
We check both these requirements in all the ad

studies. To assess the balance of the propensity scores,
we inspect the histograms of the estimated propensity
scores by treatment group.18 Next, we examine stan-
dardized differences in covariates between the exposed
and unexposed users, before and after matching.
Continuing with study 4 as our example, Figure 5

presents the density of the estimated propensity scores
by treatment status, before and after matching on the
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propensity scores. The four plots depict the densities
obtained from estimating the propensity scores using
the same sequence of covariate groups in Section 5
(variable sets 1–4). As we add additional covariates,
the propensity score densities across exposed and

unexposed groups exhibit greater separation, illustrat-
ing the predictive power of the covariates. Note the
support of the densities is from 0.05 to 0.95 owing to
trimming. In each case, the unmatched densities share
significant overlap but vary considerably over the range.

Figure 5. (Color online) Study 4 Density of Estimated Propensity Scores by Treatment and Pre/Post Matching
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Matching balances the propensity score densities across
treatment status, so well in fact that the matched lines
overlap perfectly in the plots. Little bias seems to remain
in the difference of the propensity scores between the
exposed and unexposed group.

Detailed graphs with the results of all remaining
studies can be found in the online appendix, starting on
page OA-1. We present the density of estimated pro-
pensity scores by treatment status, using the complete
set of observables (variable set 4) to estimate the pro-
pensity scores. In each study, we successfully balance
the distribution of the propensity score.

Our ability to balance the propensity score distribu-
tion is perhaps unsurprising. The sheer size of our
studies ensures we have a large pool of unexposed users
to match to exposed users, even in studies in which a
majority of users are exposed. In such cases, matching
with replacement is necessary tomatch all exposed users.

Given thatwe achieve balance on the propensity score
distributions, how well does this balance the actual
observables? Following the recommendations of Gelman
and Hill (2007) and Imbens and Wooldridge (2009),
we examine the standardized differences in covariate
means between exposed and unexposed groups. Before
matching, we expect to observe differences in the co-
variate means between the exposed and unexposed
group because selection into exposures is nonrandom.

We illustrated this problem for study 4 in Table 5. We
would like to knowwhethermatching on the propensity
score reduces the mean differences for covariates.
We normalize the difference of means for each vari-

able using the pooled standard deviation of the covariate
across exposed and unexposed groups. The normalized
difference is preferred to a t-statistic that tests the null
hypothesis of a difference in the means, because the
t-statistic might be large if the sample is large, even if
the difference is substantively small. Figure 6 presents
the absolute standardized differences for each variable
set in study 4. In the upper left figure, only observ-
ables from variable set 1 (FB variables, see Section 5 for
a definition) are used to estimate the propensity scores
to achieve balance. Although a number of the orange
circles Q: 10show a moderate difference before balancing
(up to approximately 0.4 standard deviations), matching
brings down the magnitude of these differences below 0.1
standard deviations. Stuart and Rubin (2007) suggest the
standardized differences in means should not exceed 0.25.
However, balancing on the FB variables does little to re-
duce the mean differences for the other variables, some of
which have differences approaching 1 standard deviation.
In each of the next plots in Figure 6, we estimate the

propensity score after including another set of variables.
In each case, conditioning on this new set of variables
successfully reduces the mean differences between the

Figure 6. (Color online) Absolute Standardized Differences of Covariate Means for Study 4

Note. The sets of variables correspond to those described on page 21.Q: 28
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exposed and unexposed group for the added variables.
The bottom right figure shows that conditioning on the
full set of observables eliminates nearly all differences in
means across variables. Thus, balancing on the propensity
score also achieves balance on the covariate means across
treatment groups for study 4.

Detailed graphs of all remaining studies with the stan-
dardized differences obtained conditioning on all observ-
ables can be found in the online appendix, starting on
page OA-4. Balancing on the propensity score sub-
stantially reduces the mean differences in all the studies
and achieves good balance on the underlying observables.

7. Results
We nowpresent the results from the 15 studies.We first
present the results from RCTs and then those from
applying multiple observational approaches. Because
of the data’s confidential nature, all conversion rates
have been scaled by a random constant, masking levels
but allowing comparisons across studies.

7.1. Randomized Controlled Trial
To explain the results, we first highlight one typical
advertising study (we refer to it as “study 4”). An
omnichannel retailer ran an ad campaign over two
weeks in the first half of 2015. The study involved 25.5
million users randomly split into test and control groups
in proportions of 70% and 30%, respectively. Ads were
shown on mobile and desktop Facebook news feeds
in the United States. For this study, the conversion pixel
was embedded on the checkout-confirmation page.
Therefore, the outcomemeasured in this study iswhether
a user purchased online during the study or up to several
weeks after the study ended.19

As Figure 7 shows, the conversion rates for the test
and control groups of study 4 were 0.045% and 0.033%,
respectively, yielding an ITT of 0.012% and an ITT lift
of 38%. We derive the estimated ATT by dividing the

ITT (0.012%) by the percentage of consumers who were
exposed to the ad (37%), yielding an ATT of 0.033%. On
the basis of the conversion rate of 0.079% for treated
users in the test group, this implies the ATT lift was
73% (�0.033%/(0.079% − 0.033%)). The 95%bootstrapped
confidence interval for this lift is [49%, 103%].20

Tables 3 and 4 present the results of the RCTs for all
studies. The first table summarizes the ITT results; the
second summarizes the ATT results. The results for
study 4, for example, are in the fourth row of each table.
Looking across all studies reveals a reasonable

amount of variation in the percentage of the test group
exposed to ads and in the ATT lift. Of the 14 studies
with a checkout conversion, six failed to produce sta-
tistically significant lifts at the 5% significance level
(although two were significant at a 10% level).
The lifts for registration and page-view outcomes

are typically higher than for checkout outcomes,21 for
at least two possible reasons. One is that registration
and page-view outcomes are easier outcomes to trigger
via an advertisement, compared with a purchase—after
all, the former outcomes typically require no payment.
Second, specific registration and landing pages may be
tied closely to the ad campaigns. Because unexposed
users may not know how to get to the page, unexposed
users are much less likely to reach that page than ex-
posed users. For checkout outcomes, however, users in
the control group can purchase from the advertiser as
they normally would—triggering a conversion pixel
does not take special knowledge of a page.22

Going forward, we will use the lift measured by the
RCT as our gold standard for the truth, the benchmark
against which to compare the observational methods.

7.2. Observational Models
Earlier we noted that we will evaluate observational
methods by ignoring our experimental control group
and analyzing only consumers in the test group. By

Figure 7. (Color online) Results from RCT
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doing so, we replicate the situation advertisers face
when they rely on observational methods instead of an
RCT, namely, to compare exposed to unexposed con-
sumers, all of whom were in the ad’s target group.

What selection bias do observational methods have
to overcome to replicate the RCT results? Continu-
ing with study 4 as our example, Table 5 depicts the
differences between unexposed and exposed users.

Table 3. ITT Lift for All Studies and Measured Outcomes

Study Outcome

Conversion probability (%)

RCT ITT (%) RCT ITT lift (%)
RCT ITT lift confidence

interval (%)Control group Test group

S1 Checkout 0.105 0.131 0.027 25.3 [13.8, 37.9]
S2 Checkout 0.033 0.033 0.000 1.0 [−3.5, 5.7]
S3 Checkout 0.203 0.217 0.014 6.9 [1.2, 13.0]
S4 Checkout 0.033 0.045 0.012 37.7 [27.2, 49.1]
S5 Checkout 0.009 0.022 0.013 153.2 [127.0, 182.4]
S7 Checkout 0.247 0.251 0.004 1.5 [−0.2, 3.3]
S8 Checkout 0.047 0.047 −0.001 −1.2 [−9.2, 7.6]
S9 Checkout 0.184 0.187 0.003 1.7 [0.0, 3.5]
S10 Checkout 0.113 0.115 0.002 1.5 [−9.1, 13.2]
S11 Checkout 0.261 0.277 0.016 6.2 [3.3, 9.3]
S12 Checkout 5.487 5.547 0.059 1.1 [0.1, 2.1]
S13 Checkout 0.282 0.272 −0.010 −3.5 [−10.1, 3.5]
S14 Checkout 0.027 0.036 0.009 34.3 [25.1, 44.1]
S15 Checkout 1.385 1.413 0.028 2.0 [0.4, 3.7]
S1 Registration 0.078 0.570 0.492 630.1 [568.3, 697.6]
S5 Registration 0.078 0.341 0.264 339.9 [325.2, 355.2]
S8 Registration 0.010 0.012 0.003 26.5 [5.8, 51.1]
S10 Registration 0.363 0.385 0.022 6.0 [−0.2, 12.6]
S14 Registration 0.165 0.304 0.139 84.5 [79.5, 89.7]
S2 Page view 0.011 0.123 0.111 994.0 [917.7, 1076.1]
S5 Page view 0.084 0.275 0.191 227.7 [216.8, 239.0]
S6 Page view 0.356 0.397 0.042 11.7 [10.8, 12.5]

Notes. RCT ITT and RCT ITT lift in bold indicate statistically different from zero at the 5% level. The 95% confidence intervals for RCT ITT lift
obtained via bootstrap.

Table 4. ATT Lift for All Studies and Measured Outcomes

Study Outcome Exposed (%)

Conversion probability (%)

RCT ATT (%) RCT ATT lift (%)
RCT ATT lift

confidence interval (%)Exposed in test Unexposed in test

S1 Checkout 76 0.151 0.069 0.035 30.0 [16, 46]
S2 Checkout 48 0.054 0.014 0.001 1.3 [−5, 8]
S3 Checkout 66 0.260 0.131 0.021 8.8 [1.1, 17]
S4 Checkout 37 0.079 0.025 0.033 72.8 [49, 103]
S5 Checkout 30 0.055 0.008 0.045 449.6 [306, 761]
S7 Checkout 51 0.284 0.217 0.007 2.7 [−0.3, 6]
S8 Checkout 26 0.069 0.039 −0.002 −2.9 [−21, 23]
S9 Checkout 6.6 2.105 0.052 0.049 2.4 [−0.1, 5]
S10 Checkout 65 0.127 0.092 0.003 2.0 [−11, 20]
S11 Checkout 42 0.488 0.124 0.039 8.6 [5, 13]
S12 Checkout 77 6.403 2.810 0.078 1.2 [0.2, 2]
S13 Checkout 30 0.187 0.309 −0.033 −15.1 [−35, 20]
S14 Checkout 35 0.068 0.019 0.026 62.0 [43, 86]
S15 Checkout 81 1.470 1.175 0.034 2.4 [0.4, 5]
S1 Registration 76 0.725 0.064 0.643 781.4 [694, 890]
S5 Registration 30 0.993 0.068 0.893 893.1 [797, 1010]
S8 Registration 26 0.025 0.008 0.010 63.2 [11, 176]
S10 Registration 65 0.423 0.313 0.033 8.6 [0, 19]
S14 Registration 35 0.642 0.119 0.393 158.1 [145, 173]
S2 Page view 48 0.249 0.007 0.233 1,517.1 [1,357, 1,733]
S5 Page view 30 0.753 0.075 0.647 608.8 [541, 692]
S6 Page view 61 0.557 0.152 0.069 14.0 [13, 15]

Notes. RCT ATT and RCT ATT Lift in bold indicate statistically different from zero at 5% level. The 95% confidence intervals for RCT ATT Lift
obtained via bootstrap.
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For example, the second item there shows that exposed
users are approximately eight percentage points more
likely to be female than unexposed users. The table also
demonstrates that, compared with unexposed users,
exposed users are older, more likely to be married, have
fewer Facebook friends, and tend to access Facebook
more frequently from a mobile device than a desktop.
As expected, a significant degree of covariate imbalance
exists across the exposed and unexposed groups.

If we are willing to (incorrectly) assume exposure
is random, we could compare the exposed and unex-
posed groups, as in Equation (13). The conversion rate
among exposed and unexposed users was 0.061% and
0.019%, respectively, implying anATT lift of 316%. This
estimate represents the combined lift due to treatment
and selection and is more than four times the lift due to
treatment of 73%.

In the remainder of this section, we use multiple ob-
servational methods to estimate advertising effectiveness.
Our goal is to assess how close these estimates come to
the RCT ATT lift benchmark.

We first present three methods that match exposed
and unexposed groups but do not rely on an out-
come model: (1) exact matching based only on age and
gender (as a naive benchmark used widely in indus-
try), (2) stratification (STRAT), and (3) propensity score
matching. The next three methods rely on an outcome
model: (4) regression adjustment (RA) controls for ob-
servables but does not rely on matching, (5) inverse-
probability-weighted regression adjustment (IPWRA)
uses the propensity score to weigh observations in the
regression model, and (6) STRATREG relies on both an
outcome model and matching within strata. We begin
with study 4 and then highlight key findings with
additional studies. Finally, we summarize the results of
all 15 studies.

7.2.1. Study 4. Figure 8 summarizes the results from all
methods. To interpret the graph, consider the right-
most entry on the x axis, “RCT.” This graph shows the
ATT lift from the RCT (73%) against which we compare
all other methods. Next, the lift of each method is
graphed with error bars. We describe the calculation of
standard errors in Section 6.2.We also report the results
from a test of the hypothesis that the RCT lift equals the
lift of a given method (see the graph for an explanation
of symbols). In some cases, we cannot draw an in-
ference if we are unable to compute the covariance
between the RCT and observational treatment effects
(e.g., using propensity score matching).
Previously, we estimated a lift of 316% when com-

paring exposedwith unexposed users (E-U). Given that
this estimate represents the combined lift due to treat-
ment and selection, it is not surprising that all methods
come closer to the RCT. Exact matching on age and
gender alone performs poorly, yielding a lift of 222%.

Table 5. Mean by Exposure

Variable Unexposed Exposed

Age 26.4 29.3
Female 88% 96%
Facebook age 2,202 2,242
No. of friends 618 608
Facebook web 5.1 4.0
Facebook mobile 24.8 26.8
Married 8% 19%
Single 10% 14%
Phone A 5% 2%
Phone B 46% 52%
Phone C 48% 45%

Figure 8. (Color online) Summary of Lift Estimates and Confidence Intervals for Study 4

NotesQ: 29 . *We reject the hypothesis at a 5% significance level. **We reject the hypothesis at a 1% significance level. [ ]We fail to reject the hypothesis.
°We cannot draw an inference.
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All methods (except for the regression model, RA) show
the following pattern: variable sets 1–3 overestimate lift
compared with the RCT by approximately the same
amount. The richest set of explanatory variables, vari-
able set 4, yields estimates of lift that are close to the
RCT, except for RA, which underestimates lift. Overall,
whether a method relies on an outcome model seems
unimportant.

Study 4 suggests that some observational methods
with a rich set of explanatory variables (e.g., STRATREG4)
can recover the RCT lift. However, are the findings from
study 4 typical?

7.2.2. Study 1. Study 1’s results follow a similar pat-
tern to those in study 4 (see top panel in Figure 9). All
methods do better than the exposed–unexposed com-
parison of 217%. As in study 4, the best approaches
(e.g., STRATREG4 or RA4) yield lift estimates statisti-
cally indistinguishable from the RCT.

7.2.3. Study 9. The pattern we observed in the two
previous studies does not extend to other studies.
Study 9, for example, has an RCT lift estimate of 2.4%
(statistically different from 0 at a 10% level). The closest
lift estimate is 1,306% (RA4), a massive overestimate.
We speculate that this discrepancy is partially the result
of an unusually small exposure rate of only 6.6%,which
leaves the ad-targeting mechanism ample opportu-
nity to target the specific set of consumersmost likely to
respond. As in studies 1 and 4, variable set 4 improves
the lift estimate substantially, but it remains far from
the RCT estimate.

7.2.4. Study 15. In studies 1, 4, and 9, observational
methods overestimated RCT lift for most methods and
variable sets. However, as study 15 shows, even this
pattern is not generalizable. Except for exact matching
on age and gender, all methods underestimate lift.

7.3. Summary of All 15 Studies
Detailed graphs with the results of all remaining studies
can be found in the online appendix, starting on page
OA-9. A summary of nearly all results in these graphs is
in Figure 10. The rows correspond to a study-conversion-
type pair. The first results column reports the RCT lift,
which is highlighted in redQ: 11 if it is statistically signifi-
cant at a 5% level. Remaining columns contain the lift
estimates of the observational methods we analyze. The
sequence of columns corresponds to the sequence of
methods in the detailed graphs. Each cell is color coded
to represent when and by howmuch observational lift
estimates differ from RCT lift estimates. Red (blue)
means the observational method overestimates (under-
estimates) lift. The darkest shademeans the observational

method over- or underestimates the RCT lift by a factor of
three or more. The color is proportional to the magnitude
of misestimation.
A scan of Figure 10 reveals several clear patterns. First,

the observationalmethodswe studymostly overestimate
the RCT lift, although in some cases they can signifi-
cantly underestimate RCT lift. Second, the point esti-
mates in 7 of the 14 studies with a checkout-conversion
outcome are consistently off by more than a factor of
three. Third, observational methods do a better job of
approximating RCT outcomes for registration and page-
view outcomes than for checkouts.We believe the reason
is the nature of these outcomes. Because unexposed users
(both treatment and control) are relatively unlikely to
find a registration or landing page on their own, com-
paring the exposed group in treatment with a subset of
the unexposed group in the treatment group (the com-
parison all observational methods are based on) yields
relatively similar outcomes to comparing the exposed
group in treatment with the (always unexposed) con-
trol group (the comparison the RCT is based on). Fourth,
scanning across approaches, because the exposed–
unexposed comparison represents the combined treat-
ment and selection effect—given the nature of selection
in this industry—the estimate is always strongly biased
up, relative to the RCT lift. Exact matching on gender
and age decreases that bias, but it remains significant.
Generally, we find that more information helps, but
adding census data and activity variables helps less than
the Facebook match variable. We do not find that one
method consistently dominates: in some cases, a given
approach performs better than another for one study
but not the other.

8. Assessing the Role of Unobservables in
Reducing Bias

Many of the observational models are unable to recover
the RCT treatment effect, even though matching on the
propensity score achieves good balance on the pro-
pensities themselves and on the underlying distribution
of covariates (see Section 6.3). Of course, the uncon-
foundedness assumption requires not only balance on
observables but also that no unobservables exist thatmight
be correlated with treatment and potential outcomes.
Next, we present a sensitivity analysis based on the

following thought experiment: “If we could obtain new
observables, howmuch better would they need to be to
eliminate the bias between the observational and RCT
estimates?” This analysis is motivated by the fact that,
although our data are rich by certain standards, we do
not observe all the information Facebook uses to run its
advertising platform. Hence, this section investigates
whether additional data might possibly eliminate the
bias between the observational and RCT estimates.
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Figure 9. (Color online) Summary of Lift Estimates and Confidence Intervals

Notes. *We reject the hypothesis at a 5% significance level. **We reject the hypothesis at a 1% significance level. [ ]We fail to reject the hypothesis.
°We cannot draw an inference.
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To help frame our approach, suppose unconfounded-
ness fails, such that

Yi(0),Yi(1)( ) ⊥⊥Wi|Xi.

Now suppose some unobservable U ∈ R exists cor-
related with Y and W such that—if we observed U—
unconfoundedness would once again hold,

Yi(0),Yi(1)( ) ⊥⊥ Wi|Xi,Ui. (30)

Themagnitude of the bias from ignoringU depends on the
strength of its correlations with Y and W. Our approach,
based on the methodology developed in Rosenbaum and
Rubin (1983a) and extended by Ichino et al. (2008), is to
simulate an unobservableU that eliminates this bias.23We
direct the reader to the online appendix for details.

Once we have simulated the unobservable U for a
study, we compare the explanatory power of U with
the explanatory power of our observables to assess the
likelihood that such data could actually be obtained.
Let R2

Y(X,U) be the R2 from a regression of the outcome
on (X,U) for the subset of observations with Wi � 0.
Similarly, R2

Y(X) ≡ R2
Y(X, 0) is the R2 from a regression

on X alone for untreated users. The relative strength of
the unobservable to affect outcomes is

R2
Y,rel �

R2
Y(X,U) − R2

Y(X)
R2
Y(X)

and similar for R2
W,rel. The interpretation is as follows:

R2
Y,rel � 1, and R2

W,rel � 1 represents the combined power

of all four variable sets in explaining variation in out-
come and treatment, respectively. Hence, if we found an
unobservable with, for example,R2

Y,rel � 2, andR2
W,rel � 3,

this unobservable would have to explain two times as
much of the outcomevariation and three times asmuch of
the treatment variation as our combined variable sets to
eliminate the bias in the observational method.
The top panel in Figure 11 presents the sensitivity

analysis for study 4. As the subtitle of the chart sug-
gests, estimating using stratification produces a treat-
ment with a lift estimate of 99%, compared with the
RCT estimate of 73%. Notice the combined treatment
and selection effect (measured through the exposed–
unexposed comparison) is 316%, which means our ob-
servational data have succeeded in eliminating much
but not all of the selection effect. The horizontal axis
characterizes the relative R2 for treatment, and the
vertical axis characterizes the relative R2 for outcomes.
The strength of our observables is displayed using “+,”
obtained from separate regressions of the particular
variable set on treatment and outcomes. For example,
the user activity variables alone explain approximately
35% of the relative variation for treatment and 20%
of the relative variation for outcomes. The black dots
represent points at which using the unobservable was
able to generate the RCT treatment effect. Not sur-
prisingly, given that the degree of remaining bias after
using stratification is small relative to the bias reduc-
tion that stratification already achieved with our ob-
servables, a relatively weak unobservable is required to

FigureQ: 30 , 32 10. (Color online) Summary of Lift Results
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Figure 11. (Color online) Sensitivity Analysis for Studies 4, 1, and 9

Note. FB, FB variables; C, Census variables; UA, user-activity variables; M, match-score variables.
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remove the bias entirely. The unobservable could be the
same strength as the census data, which explains ap-
proximately 7% of the relative treatment variation and
5% of the relative outcome variation. Alternatively, the
unobservable could explain less of the variation in out-
come if it increases its explained variation in treatment.

The sensitivity analysis for study 1 in Figure 11 pres-
ents a somewhat different picture. In this study, using
stratification produces a treatment with a lift estimate of
93.6% versus the RCT estimate of 30%. The combined
treatment and selection effect is 217%, which means our
observational data have eliminated less of the selection
effect than in study 4. Here a stronger unobservable is
required to remove the bias entirely. The unobservable
could be the same strength as variable set 4 (M in the
graph), which explains approximately 40% of the relative
treatment and outcome variation.

As our final example, consider a study in which
stratification leads to massively biased estimates of the
RCT lift, 1,724% relative to the 2.36%, with a combined
treatment and selection effect of 4,047%. As the bottom
right panel of Figure 11 shows, the unobservable would
need to have between 5 and 10 times as much ex-
planatory power as the observables in our data.

Detailed graphs with the results of all remaining
studies can be found in the AppendixQ: 12 . We analyze only
checkout-conversion outcomes, because they are the
outcomes for which observational methods performed
the worst. Inspecting the results yields a number of
additional insights. Let brr (bias reduction ratio) be the
ratio of remaining bias after stratification and the total
selection effect:

brr � |STRAT Lift -RCT Lift|
|EU Lift-RCT Lift| .

Table 6 sorts the studies by this ratio. Visual in-
spection of the graphs in Figure A.1Q: 13 shows that the
degree of additional information needed to eliminate

the bias increases roughly with brr. Studies that need
little additional information are 11, 3, 2, 4, 14, 15, and
10. Note that little additional information is a statement
that is relative to the bias reduction we have already
achieved using observational data. We caution that the
remaining bias may be very hard to eliminate. For
example, although we have already eliminated 90%
of the bias in study 2 (brr = 10%), we need data that
would allow us to reduce the remaining bias from 37%
to 1.3%. It may very well be that the “last mile” is the
hardest. Studies in which one would need massive
additional information relative to what we observe are
12, 9, and 5. Studies 8, 13, 7, and 1 fall roughly in the
middle; they require data on the order of one or two of
the variable sets we have.
We also gain additional insights about the nature

of our explanatory variables. First, the census variables
(C) generally explain little of the variation; moreover,
they never account for more than 10% of explained
variation in treatment exposure, but in 6 of 14 cases
account for between 10% and 60% of the explained var-
iation in the outcome. Second, the user-activity variable
mostly explains treatment exposure rather than outcome.
This is consistent with the finding in Lewis et al. (2011)
that unobserved user activity led to selection into ex-
posure. We also find that the match (M) variable mostly
explains treatment exposure rather than outcome, which
is not ex ante obvious, given that this variable is a
composite of many user characteristics and behaviors.
Third, the Facebook variables generally have high ex-
planatory power that applies similarly to treatment ex-
posure and outcome.
Our results show that for some studies, observational

methods would require additional covariates that ex-
ceed considerably our combined observables’ explan-
atory power. This suggests that eliminating bias from
observational methods would be hard, even for in-
dustry insiders with access to additional data.

Table 6. Summary of Bias Reduction Through Stratification

Study Conversion outcome EU lift (%) STRAT lift (%) RCT lift (%) brr (%)

11 Checkout 392 7.1 8.6 0.4
3 Checkout 198 18 8.8 5
2 Checkout 377 37 1.3 10
4 Checkout 316 99 73 11
14 Checkout 365 99 62 12
15 Checkout 126 −13 2.4 12
10 Checkout 138 −15 2 13
8 Checkout 179 33 −2.9 20
13 Checkout 61 −30 −15 20
7 Checkout 131 35 2.7 25
1 Checkout 217 94 30 34
12 Checkout 233 81 1.2 34
9 Checkout 4,074 1,724 2.4 42
5 Checkout 678 306 450 63
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9. Conclusion
In this paper, we have analyzed whether the variation
in data typically available in the advertising industry
enables observational methods to substitute reliably for
randomized experiments in online advertising mea-
surement. We have done so by using a collection of 15
large-scale advertising RCTs conducted at Facebook.
We used the outcomes of these studies to reconstruct
different sets of observational methods for measuring
ad effectiveness and then compared each of them with
the results obtained from the RCT.

We find that across the advertising studies, on av-
erage, a significant discrepancy exists between the ob-
servational approaches and RCTs. The observational
methods we analyze mostly overestimate the RCT lift,
although in some cases they significantly underestimate
this lift. The bias can be high: in 50% of our studies, the
estimated percentage increase in purchase outcomes is
off by a factor of three across allmethods.With our small
number of studies, we could not identify campaign
characteristics that are associated with strong biases.
We also find that observational methods do a better job
of approximating RCT lift for registration and page-
view outcomes than for purchases. Finally, we do not
find that one method consistently dominates. Instead, a
given approach may perform better for one study but
not another.

Our paper makes three contributions. The first is to
shed light on whether—as is thought in the industry—
sophisticated observational methods based on the
individual-level data plausibly attainable in the industry
are good enough for ad measurement, or whether these
methods likely yield unreliable estimates of the causal
effects of advertising. Results from our 15 studies sup-
port the latter: the methods we study yield biased es-
timates of causal effects of advertising in a majority of
cases. In contrast to existing examples in the academic
literature, we find evidence of both under- and over-
estimates of ad effectiveness. These biases persist even
after conditioning on a rich set of observables and using
a variety of flexible estimation methods.

Our second contribution is to characterize the nature of
the unobservable needed to use observational methods
successfully to estimate ad effectiveness. Specifically, we
conduct a thought experiment to characterize the quality
of data required, above and beyond our current data, to
allow an observational model to recover the RCT treat-
ment effect. In more than half the cases, the additional
data would need to be as strong as one or two of our
better-performing variables sets; obtaining such data is
likely not trivial.

Third, we add to the literature on observational versus
experimental approaches to causal measurement. Over
the last two decades, we have seen significant improve-
ments in observational methods for causal inference

(Imbens and Rubin 2015). We analyzed whether the
improvements in observational methods for causal in-
ference are sufficient for replicating experimentally
generated results in a large industrywhere suchmethods
are commonly used. We found they do not—at least not
with the data at our disposal.
Our data possess a number of strengths relative to

other online advertising studies: the sheer size of each
ad experiment, the rich set of observables, and Face-
book’s ability to track exposures and conversions across
all of a user’s devices. Moreover, Facebook’s closed
system makes solving selection issues an easier prob-
lem than many other ad-effectiveness applications be-
cause advertisers more likely base their bids on the
same information sets. By contrast, in display ads pur-
chased via real-time bidding, advertisers often have
private information, from their own businesses or through
third-party data providers, to inform their bidding
strategies.
One caveat related to our conclusion is that the

performance of the observational methods we study is
only as good as the data and the variation they contain.
In particular, the failure of observational methods is
specific to the Facebook data we had at our disposal. It
did not encompass all the data Facebook relies on in its
ad-delivery system, nor does Facebook necessarily log
or retain all these data for future analysis. Moreover,
performing this analysis on a different advertising
platform may yield different results.
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Appendix. Incorporating an Unobservable into an
Observational Model

Our approach is based on the methodology developed in
Rosenbaum and Rubin (1983a) and extended by Ichino et al.
(2008). To provide some intuition, we describe the method-
ology in Rosenbaum and Rubin (1983a). Starting with the
modified unconfoundedness assumption in Equation (30),
assume a binary unobservable, U ∼ Bern(0.5), exists corre-
latedwith treatment and outcomes.24 The observational model
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Figure A.1. (Color online) Sensitivity Analysis for Studies 1–5 and 7–9
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consists of a logit treatment equation and a linear outcome
equation with a normal error term:

Pr(Wi � 1|Xi,Ui) � exp(γ′Xi + αUi)
1 + exp(γ′Xi + αUi) (A.1)

Yi � τWi − βXi − δUi + εi, εi ∼ N(0, σ2), (A.2)

where τ is the treatment effect of interest. Note that Ui enters
both equations and that the pair of parameters (α, δ) deter-
mine the relative importance of U in each equation. Because

U is unobserved, we must integrate over it to form the log-
likelihood:

L(Y,W; τ, β, γ, σ2, α, δ)

� ∑N
i�1

ln
1
2
φ(Yi − τWi − βXi; σ

2) (exp(γ
′X))Wi

1 + exp(γ′X) +
[

(A.3)

1
2
φ(Yi − τWi − βXi − δ; σ2) (exp(γ

′X + α))Wi

1 + exp(γ′X + α)
]
,

(A.4)

FigureQ: 31 A.2. (Color online) Sensitivity Analysis for Studies 10–15
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where φ(·) is a normal density. In practice, optimizing the log-
likelihood with respect to (α, δ) is likely difficult because the
data are not directly informative of their values. Instead,
Rosenbaum and Rubin (1983a) and Imbens (2003) recom-
mend fixing values of (α, δ) and estimating θ � (τ, β, γ, σ2), so
that the treatment effect can be expressed as τ(α, δ).

In the notation of Rosenbaum and Rubin (1983a), our goal
is to find values of (α, δ) such that the treatment effect equals
the estimate obtained from the RCT,

τ̂rct � τ(α∗, δ∗). (A.5)

These (α∗, δ∗) characterize the strength of the unobservable U
needed to eliminate the bias of the observational method.
Note that many values of (α∗, δ∗) might satisfy (5)Q: 15 .

The approach above relies on a parametric model for the
outcome. To avoid this, we follow Ichino et al. (2008), who
propose directly specifying the parameters that characterize
the distribution of the unobservable U:

pjk ≡ Pr(Ui � 1|Wi � j,Yi � k), j, k ∈ {0, 1}.
The four parameters p � {p00, p01, p10, p11} define the proba-
bility of Ui � 1 over each combination of treatment assign-
ment and conversion outcome. We simulate a value of U for
each exposed and unexposed user and re-estimate the ATT
including this simulated unobservable in the collection of
covariates used to estimate the propensity score. Changing
the values of p produces different types of correlations be-
tween the unobservable U and treatment and outcomes.

A close parallel exists between p and (α, δ). In the
Rosenbaum–Rubin sensitivity model, δ> 0 in Equation (2)
implies that omitting the unobservable U positively biases
the estimated treatment effect τ. In Ichino et al. (2008), the
corresponding direction of bias is achieved by simulating a
U with p01 > p00. To see why, note that measurement bias
arises when Pr(Yi � 1|Wi � 0,Xi,Ui) �� Pr(Yi � 1|Wi � 0,Xi),
which implies that, without observing U, the outcome of
unexposed users cannot be used to estimate the outcome of
exposed users in the case of no exposure. This inequality arises
when p01 > p00 because25:

p01 > p00 ⇒Pr(Ui � 1|Wi � 0,Yi � 1,Xi)
> Pr(Ui � 1|Wi � 0,Yi � 0,Xi)

⇒ Pr(Yi � 1|Wi � 0,Ui � 1,Xi)
> Pr(Yi � 1|Wi � 0,Ui � 0,Xi).

In the Rosenbaum–Rubin sensitivity model, α determines the
strength of the unobservable to lead to selection into treat-
ment. In Ichino et al. (2008), the equivalent concept can be
found by defining the conditional probability of the treatment
assignment Wi � j and the unobservable Ui � 1:

pj � Pr(Ui � 1|Wi � j) � ∑1
k�0

pjk · Pr(Y � k|W � j).

p1 is the probability of users drawing an unobservable,
Ui � 1, conditional on being exposed, Wj � 1. Conversely, p0
is the probability of users drawing an unobservable, Ui � 1,
conditional on being unexposed,Wj � 0. Hence, if we specify
that p1 > p0, a user who draws a positive unobservable is more
likely to be exposed rather than unexposed. This corresponds
to α in Equation (1), or the strength of the unobservable to
lead to selection into treatment.

Our sensitivity analysis entails two steps. First, we cal-
culate the ATT while integrating over the unobservable.
Recall that adding the outcome model did not improve our
estimates significantly. As a result, we estimate the treatment
effect by stratification on the propensity score alone. Because
we have to compute the treatment effect repeatedly using
Monte-Carlo draws, we require a computationally efficient
method, which stratification is. First, fix {p00, p01, p10, p11} and
repeatedly draw R values of Ui � {U1

i ,U
2
i , . . . ,U

R
i }. Next, for

each draw, we calculate an ATT over users and then average
over the R ATT estimates. Specifically, for draw r � 1, . . . ,R,
we follow these steps:

• For each user, draw Ur
i ∼ Bern(pjk) for j � Wi and k � Yi.

• Estimate the propensity score êri � e(Xi,Ur
i ; φ̂

r).
• Stratify the estimated propensities êri intoM bins defined

by Br
im � 1 · bm−1 < êri ≤ bm

{ }
.

• Calculate the ATT across the strata, τsen,r(p), as in
Section 4.2.

• Calculate the average ATT over the draws, τsen(p) �
1
R
∑

r τ
sen,r(p).

To explore the full possible range of U that would explain
the bias of the estimated ATT, we search over a grid of the
probability parameters p. Specifically, we fix p11 � .5 and
pick a pair p10 and p01 ∈ [0, .25, .5, .75, 1]. We then use Brent’s
method using [0, 1] as the starting bracket to find a p00 such that

τ̂rct � τsen(p∗) .
When we cannot find a p00 ∈ [0, 1] given some p10 and p01 for
p11 � .5,we also search for a solution using p11 � 0 and p11 � 1.26

Rather than presenting the results in terms of p∗, we take a
cue from Imbens (2003) and express the strength ofU in terms
of the relative variation it explains in treatment assign-
ment and outcomes.27 This is described in the main body of
the text using a slightly less cumbersome, though also less
precise, notation than what we use here. We can now re-
define these terms using the notation in this appendix,
such that the relative strength of the unobservable to affect
outcomes is

R2
Y,rel �

R2
Y(p) − R2

Y(0)
R2
Y(0)

and similar for R2
W,rel.

Endnotes
1https://www.recode.net/2017/12/4/16733460/2017-digital-ad-spend
-advertising-beat-tv, accessed April 7, 2018.
2A growing literature focuses on measuring digital ad effectiveness
using randomized experiments. See, for example, Goldfarb and Tucker
(2011), Lewis and Reiley (2014), Sahni (2015), Sahni and Nair (2016),
Johnson et al. (2016, 2017a, b, c), and Kalyanam et al. (2018). See Lewis
et al. (2011) for a recent review.
3Most advertising data are collected through cookies at the user-
device-web-browser level, with two potential consequences. First, users
in an experimental control group may inadvertently be simultaneously
assigned to the treatment group. Second, advertising exposure across
devices may not be fully captured. We avoid both problems because
Facebook requires users to log in to Facebook each time they access the
service on any device and browser. Therefore, ads are never inadvertently
shown tousers in the control group, andall ad exposures andoutcomesare
measured. Lewis andReiley (2014) alsoused a sample of logged-in users to
match the retailer’s existing customers to their Yahoo! profiles.
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4Beyond digital advertising, other work assesses the effectiveness
of marketing messages using both observational and experimental
methods in the context of voter mobilization (Arceneaux et al. 2010)
and water-usage reduction (Ferraro and Miranda 2014, 2017).
5 Facebook refers to these ad tests as “conversion lift” tests (https://
www.facebook.com/business/a/conversion-lift, accessed April 7,
2018.). Facebook provides this experimental platform as a free service
to qualifying advertisers.
6We excluded brand-building campaigns in which outcomes are
measured through consumer surveys.
7A “conversion pixel” refers to two types of pixels used by Facebook.
One is traditionally called a “conversion pixel,” and the other is known
as a “Facebook pixel.”The studies analyzed in this paper use both types,
and they are equivalent for our purposes (https://www.facebook.com/
business/help/460491677335370, accessed April 7, 2018).
8Additional factors beyond the advertiser’s bid determine the actual
ranking. Formore information, see https://www.facebook.com/business/
help/430291176997542, accessed April 7, 2018.
9 If test users showed control users the ads, the treatment-effect es-
timates would be conservative because it might inflate the conversion
rate in the control group.
10Although ROI is a monotone transformation of lift, measuring the
ROI in addition to lift would be useful because managerial decisions
may rely on cutoff rules that involve ROI.
11Researchers have recently developed more sophisticated methods
for estimating causal effects (Imai andRatkovic 2014), including those
that blend insights from operations research (Zubizarreta 2012, 2015)
and machine learning (Athey, Imbens, and Wager, unpublished
data).We leave to futurework to explore how thesemethods perform
in recovering experimental ad effects.
12 For specific examples, see the case studies at https://www.ncsolutions
.com/pandora-pop-tarts-groove-to-the-tune-of-3x-roas/ and https://www
.ncsolutions.com/frozen-entrees/, accessed April 7, 2018.
13 If users in the test group shared ads with users in the control group,
we are able to observe those impressions. Empirically, this rarely
occurs. Any unobserved sharing would lead the RCT treatment effect
estimates to be conservative because the shared ads could inflate the
conversion rate in the control group.
14 See https://www.facebook.com/business/help/164749007013531,
accessed April 7, 2018.
15 See https://developers.facebook.com/docs/marketing-api/pacing,
accessed April 7, 2018.
16More sophisticated specifications exist, including nonparametric
models (Hirano et al. 2003), methods from machine learning
(McCaffrey et al. 2004, Westreich et al. 2010), andmore recently, deep
learning models (Pham and Shen 2017). Our goal is to choose a
reasonable approach that generates estimates similar to other rea-
sonable methods. We explored other techniques and found they did
not produce significantly different treatment effects.
17One exception to the above concerns propensity score matching.
Although Abadie and Imbens (2008) show the bootstrap is invalid for
matching procedures, they note that modifications to the bootstrap,
such as subsampling (Politis and Romano 1994) and the M-out-of-N
bootstrap (Bickel et al. 1997), are valid inferential techniques formatching
estimators. Given this, we implement a subsampling procedure to es-
timate the ATT lift.
18We are following the advice of Imbens and Wooldridge (2009), who
emphasize that “a major concern in applying methods under the as-
sumption of unconfoundedness is a lack of overlap in the covariate
distributions. In fact, once one is committed to the unconfoundedness
assumption, this may well be the main problem facing the analyst [. . .] a
direct way of assessing the overlap in covariate distributions is to inspect
histograms of the estimated propensity score by treatment status” (p. 43).

19Even if some users convert as a result of seeing the ads further in the
future, this conversion still implies the experiment will produce
conservative estimates of advertising effects.
20Note that we do not know which users in the control group would
have been exposed had they been assigned to the test group. This
quantity is derived from the identifying assumption that had un-
exposed users in the test group been in the control groups, they would
have had the same conversion probability (0.025%). Given that we
know that the overall conversion probability of control users is 0.033%
and that 37% of users were exposed, this implies the counterfactual
conversion probability of exposed users in the test group is 0.046%.
21 Johnson et al. (2017b) present a meta-study of 432 online display ad
experiments on the Google Display Network. They find the median
lift for site visits is 16%, versus a median lift for purchases of 8%.
22One might ask why lifts for registration and page-view outcomes are
not infinite, because—as we have just claimed—users only reach those
pages in response to an ad exposure. The reason is that registration and
landing pages are often shared among several ad campaigns. Therefore,
users who are in our control group might have been exposed to a
different ad campaign that shared the same landing or registration page.
23For a related literature, see Murphy and Topel (1990), Altonji et al.
(2005), and Oster (2016).
24Although this assumes X and U are independent, the assumption is
innocuous because any correlation between them would be accounted
for in a suitably flexible observationalmodel. The challenge in estimating
treatment effects arises through variation in treatment and outcomes due
to the unobservable that cannot be accounted for using the observables.
25 See the appendix of http://cepr.org/active/publications/discussion
_papers/view_pdf.php?dpno=5736 for a proof.
26This strategy is informed by the following observation: suppose
that at p11 � .5 and some p10, p01, a p00 exists that solves τsen(p∗) � τ̂rct.
Then, if a p00 exists for the same p10, p01 but a different p11, p00 will be
the same as under p11 � .5 (as will be d and s).
27 Imbens (2003) characterizes the values for (α, δ) in terms of the share
of the unexplained variation in outcomes and treatment, normalizing
by (1 − R2

Y(0)) and (1 − R2
W(0)).
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